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BACKGROUND

It seems that difficult problems in Mathematics are often solved by analogy. In the early 1960’s
Grothendieck and then Deligne used an analogy with topological sheaf theory to prove the famous Weil
conjectures of algebraic geometry. At a similar time Cohen used a seemingly similar series of analogies in
proving the independence of the continuum hypothesis from the other axioms of set theory.

What these pieces of mathematics have in common is that they exploit a type of duality between spatial
(topological, geometric) intuition and logic.

Perhaps this duality is unsurprising, since geometry and logic have been bedfellows for as long as
mathematics has been studied. In the axiomatic geometry of Euclid and the algebraic technique initiated
by Descartes, we see what appears to be the application of some form of logic to the study of (Euclidean)
geometry. Taking the logic further and going beyond purely “spatial” systems resulted in the discovery of
non-Euclidean geometry in the early 19* century. So this evolution continued, with logic being used to
generalise our notion of space, resulting eventually in the theory topological spaces that is in use today.

This line of enquiry sparked another. People began to consider logical mathematical systems
independently of any apparent spatial relevance. In this vein axiomatic set theory and abstract algebra
(including mathematical logic) came to pass.

These competing viewpoints are most certainly complementary. For example with algebraic topology we
see the logical (algebraic) perspective being used to shed light on questions of a topological nature.
Conversely, the study of Lie groups imposes a topological flavour to investigations of the general linear
groups.

An interesting feature of the evolution of mathematical understanding is the role of analogy. What has
tended to happen is that an area of mathematics is advanced by the use of some analogy of it with some
other secemingly unrelated area of mathematics (eg Grothendieck/Deligne and Cohen). The next step in
this evolution is that this analogy is made more precise, as the connections with this “seemingly unrelated
area” become understood (and it ceases to be seemingly unrelated).

The goal of this essay is to give a precise statement of this duality between geometry and logic
that has arisen by analogy with topological sheaf theory.

The vehicle for this statement is the theory of Grothendieck toposes, which provide a setting capable for
the expression of such a result. However in order to understand this theory we require some considerable
background. First general category theory will be discussed, because it is indispensable in the description
of the mathematics that follows. Then, an understanding of topological sheaf theory is developed, so that
we can understand what we are making an analogy with. Once this material has been traversed. we are
finally in a position to complete our program.



SOME INTRODUCTORY CATEGORY THEORY

For categories C and D write [C,D] for the category of functors C — D and natural transformations
between them. Also we let Set denote the category of sets and Cat denote the category of categories.

Let ¢ € obj(C). Then C(c,-) denotes the functor that maps d e obj(C) to the set C(c,d). Then f:d — d' is
mapped to C(c.f) : C(c,d) - C(c.d’) where g - f o g. Another notation for C(c.f) is f o —. By these

definitions it follows that C(c,-) e [C,Set]. Dually we define C(-.c) e [C*,Set]. Such functors are often
called hom functors.

Let F : C — D be a functor. Then the arrow u : d — Fr, ford € obj(D) and r e obj(C), is universal from d
to F when C(r,c) — D(d,Fc) given by f > Ff o u is a bijection natural in c. That is, we have the bijection
C(r,c) = D(d,Fc) natural in c. Dually, u : Fr — d is universal from F to d when C(c,r) —» D(Fc,d) given by
f+— u o Ff is a bijection natural in c. That is we have a bijection C(c,r) = D(Fc,d) naturally in c.

A functor F e [C,Set] is said to be représentable when F = C(c,-) for some ¢ € obj(C). Many of the most
important categorical constructions can be stated in terms of representable functors. For instance, F is
universal from d to F means precisely that the functor D(d,F-) is representable. Because of this, the
Yoneda Lemma (below) is one of the most powerful tools in category theory.

Yoneda Lemma: LetF e [C,Set] and ¢ € obj(C). Then [C(c,-),F] = Fc given by ¢ — ¢(1,).
Proof:

Let ¢ : C(c,—) e—> F. Then for f € C(c,d) we see that the formula ¢4(f) = Ff(¢.(1.)) follows since
by the naturality of ¢ the following diagram commutes:

C(c,0) L Fc
fo-— Ff
C(c,d) Fd
bq

Thus, ¢ is uniquely determined by its value at 1. in Fc.
Conversely each x € Fc determines a natural transformation ¢ : C(c,-) — F by dq(f) = Ff(x).
¢ so defined is natural since for g : d — d’, Fg(¢4(f)) = Fg(Ff(x)) = F(g o f)(x) = da(g o f). O

The dual version of this lemma says that for F € [C* Set], [C(-,c),F] = Fc. It is worth mentioning that the
yoneda isomorphism given above is natural in ¢ and F.

We define the Yoneda imbedding to be the functor Y : C — [C® Set] given on objects by ¢ > C(-.c). This
definition is justified in the following:

Proposition IC1: The Yoneda imbedding is a full and faithful functor.

Proof:
First we need to give the arrow mapping for Y and prove that it determines a functor.
For f e C(c,c"), for d € obj(C) the maps C(d.f) : C(d,c) - C(d.c') defined above, that is f o —,
provide the components for a natural transformation C(-,c) e— C(-.c') since the following
diagram commutes for each g € C(d,d'):



Cd,c) - > C(d,c)
go- go-—
C(d',¢) : C(d',c)

Putting £ = 1 in the above we see that C(-,1,) = l¢.. and for f € C(c',c”) it follows by
definition that C(,f) o C(-,f) = C(-fo f), so that Y is indeed a functor.

Let ¢,d € obj(C), then by the Yoneda lemma ¢ € [C(-,c),C(~,d)] is determined by its value at 1.,
but the natural transformation C(—,¢.(1.)) has this same value, that is, ¢ = C(-,9.(1.)). That is,
each ¢ € [C(-,c),C(~,d)] is the same as C(-,f) for a unique f € C(c,d). O

This proposition says that C(d,c) = C(d',c) naturally in c iffd = d'.

We define the category 2 as having two objects and one non-identity arrow and the category 1 that has one
object and no non-identity object (a one point set). For an arbitrary category C, [2,C] has arrows of C as
objects, and commutative squares of C as arrows. Let do : 1 — 2 be the functor that maps the unique object
of 1 to the domain of the non-identity arrow of 2, and let d; : 1 — 2 map to the codomain. Then [do,C] :

[2,C] - C is the induced functor that takes domains of arrows, and similarly [d;,C] takes codomains of
arrows.

LetT:E - C« D : S be functors. The comma category of T over S, written as (TIS), has as objects
triples <e,d,f> where f : Te — Sd and arrows as pairs <k,h> : <e,d,f> — <e'.d’'.f> wherek : ¢ - ¢’ and h
d — d’ such that the following diagram commutes:

f

Te Sd
Tk Sh
Te' d Sd’

We describe this construction by the following commutative diagram of functors:

TS
P Q
R
v
E < 2
T g P9 g T 0D

R is just the inclusion of TS as a subcategory of [2,C]. P is the projection described on arrows as:
<kh>:<edf>—-><edf> k:e—>e

and Q is the projection into D defined similarly. We call P the first projection of the comma category

(TLS) and Q the second projection.



ADJUNCTIONS

Adjunctions: LetF : C — D and G : D — C be functors. An adjunction is a triple <F, G, ¢>: C =D
where ¢ : D(Fc,d) = C(c,Gd) natural in ¢ and d. We write F { G to denote that F is the left adjoint to G.

Proposition A1 Every adjunction <F, G, ¢> : C = D determines the following;

(1) A natural transformation 1 : 1c e— GF where 1, = ¢(lg) is universal from ¢ to G.
(ii) A natural transformation ¢ : FG e— 1, where g4 = ¢ ' (1gy) is universal from F to d.

where the following laws are satisfied:

Proof:

(iii) Ge o NG = lg. (iv) eFoFn =15

By definition n is universal from ¢ to G iff D(Fc,d) = G(c,Gd) naturally in d which is true by .

n is natural iff Ve,¢’ € obj(C), Vf € G(c,c'), GFfon, = n, o f. To prove this equality we require
the following construction:

D(Fc,Fc) C(c,GFc)
Ffo- GFf o -
¢ /
D(Fc,Fc") C(c,GF¢")
\ N
—o0 Ff =570 f
P
D(Fc',Fc") > C(c',GF¢)

By the naturality of ¢, the top and bottom squares are commutative. The top square takes 1z, €
D(Fc,Fc) to GFf o n. € C(c,GFc’). The bottom square takes Iz tone o f € C(c,GF¢’). Since the
images of 1r and 1 in D(Fc,Fc’) agree as Ff, we see that they must both be mapped to the same
element of C(c,GFc’). That is, GFfon,=ny o f.

The proof of (ii) is the dual of (i). Specifically, we have an isomorphism ¢ : C°*(Gd,c) =
D(d,Fc) natural in ¢ and d, where for h € C(c,Gd), **(h®) = ¢”'(h). Then £ = @P(1g4™").

By Yoneda’s lemma, the mappings ¢ and ¢ are determined by (the components of) n and €.
Specifically, for h € D(Fc,d), ¢(h) = Gh o n and for k € C(c,Gd), ¢ '(k) = &4 o Fk.

Thus, Vd € obj(D), Geq © Noa = P(Ea) = lga and V¢ € 0bj(C), ere 0 Fne = 97! (Me) = 1ge.

That is, Ge o NG = 1 and €F o Fn = 1. a

We call n and ¢ the unit and counit of the adjunction respectively, and it is the convention to write
<F,G,¢,n,e> to specify the above adjunction.



Proposition A2:  Every adjunction <F,G,p,n,e> : C = D is determined by:

(1) The functor G, the object mapping of F, and V¢ e obj(C), 1. : ¢ = GFc universal from ¢ to G.

(i) The functor F, the object mapping of G, and Vd e obj(D), &4 : FGd — d universal from F to d.

(iii) The functors F and G, the natural transformations n and €, such that Gg o NG = lg and €F o Fn = 1.

Proof:
Given the universality of n for each ¢ € obj(C), we have isomorphisms ¢, : D(Fc,d) = C(c,Gd)
natural in d, given by @(h) = Gh o 1, for h € D(Fc,d). By the following construction for anyf e
C(c,c"), we see that the universality of n. uniquely defines Ff and makes n natural:

Ne

o GFc
£ GFf |
v

¢ N >GFc¢/

F so defined is a functor. Taking ¢ = ¢’ and f= 1, in the above diagram we see that F1, = 15.. The

universality of n; allows us make the identification F(g o f) = Fg o Ff in the following diagram, so
that F preserves composition:

c L GF:.c

f GFfé '."'-.‘
& Ne GFY:' GF(go f)
j” L GI\"/c\’f

Finally, we need to show that ¢ is natural in c. For f € C(¢,c) and h € D(Fc,d) this amounts to
showing that @(h) o f = ¢(h o Ff). But, @(h) o f= Gh o ¢ o f = Gh o GFfo Ne = @(h o Ff) by the
naturality of n. This proves (i).

(ii) is the dual of (i) in exactly the same way as in the previous proposition.

Given the data in (iii) we construct ¢ : D(Fc,d) — C(c,Gd) by f > Gf o Nne and ¢’ : C(c,Gd) —»
D(Fc,d) by g - &4 o Fg. Then (¢ o ¢')(g) = Geq o GFg o 1, but GFg o 1, = ngq o g since nis
natural so that (¢ o ¢')(g) = Geg o Ngq© g = lga © g = g. Similarly, (¢’ o @)(f) = &40 FGfo Fn., but
&4 0 FGI = f o g, since € is natural so that (¢' o @)(f) = fo g, 0 F. =fo lp. =f.

L@ =9 = ¢isan isomorphism = m, is universal from c to G.

.. by (i) ¢ we have determined an adjunction. 0

Corollary A3: If F{G and F' {G then F and F' are naturally isomorphic.
Proof:

D(Fe,d) = C(c,Gd) = D(F'c,d) naturally incand d = Fc = F'c naturally in c. a



Dually, if two functors have the same left adjoint then they are naturally isomorphic.

Corollary A4: (i) G is faithful iff the components of & are epi.
(i) G is full iff the components of ¢ are split monic.

Proof:

Let f,g € D(d,d"), then @(f o £4) = Gf o Geg 0 Ngq = Gf so that ¢ ' (Gf) = fo g4 and similarly for g.
- Gf=Gg o fogy=gosgy from which (i) follows.

Suppose that G is full and consider d e obj(D). Then 3 hy € D(d,FGd) such that Nad = Ghy.

.. by the naturality of €, hg o €4 = epga © FGhy = €rgq © Fga = lpga = &4 is split monic.
Suppose that the components of ¢ are split monic with left inverses hy and let g € C(Gd,Gd').

Fg
FGd FGd’
FG(ea o Fg o hq)
€4 Eq'
d d
e¢ o Fgohy

Then the outer square commutes since €4 o Fg o hy o g4 = g4 o Fg, and the inner square commutes
since ¢ is natural. But, by the universality of e we see that g = G(gg o Fg o hy). ad

Dually, F is faithful iff the components of n are mono, and F is full iff the components of n are split epi.
In particular, G is full and faithful iff € is an isomorphism, and F is full and faithful iff M is an
isomorphism.

A functor is an isomorphism of categories when it has a two-sided inverse in Cat. A functor F: C — D is
an equivalence of categories when there is a functor G : D — C and natural isomorphisms FG = 1 and

GF = 1.. An adjoint equivalence is an adjunction in which the unit and counit are natural isomorphisms.

Proposition A5: TFSAE:

Proof:

(i) G is an equivalence of categories.

(i) G is full and faithful and every ¢ e obj(C) is isomorphic to Gd for some d € obj(D).
(iii) G is part of an adjoint equivalence <F,G,qp,n,e>.

) =(i): () ® IF:D->C,n:1lc=GFande: FG = 1p. Thus, Vc € obj(C), ¢ = GFc.
Suppose that Gf = Gg for f,g € D(d,d").

Then by the naturality of &, fo g4 =€4 o FGf = g4 o FGg=gogy = f=gsinceeqis epi.
.. G is faithful, and similarly F is faithful.

Consider g € C(Gd,Gd).

Fg
FGd FGd'
FG(es o Fgoeq ")
€4 Eq
d ~ d
Ed © Fg o &d



Then the outer square commutes by definition, and the inner square commutes since ¢ is natural.
Thus, €4 o FG(g4 o Fg o ed“') =ggoFg = G(gy o Fgo ad") =g since €4 is mono and F is
faithful. Hence G is full.

(i) = (iii): Since Vc e obj(C), 3 d, € obj(D) such that ¢ = Gd, we have an object mapping F : C
— D where Fc = d; and for each ¢ an isomorphism n, : ¢ = GFc. Suppose that g € C(c.Gd), then
(g°ne) o n. =g and since G is full and faithful 3! f € D(Fc,d) such that g o m,” = Gf. Thus, n.
is universal from c to G for each ¢ € obj(C) = F is the object mapping for a left adjoint to G
with the components of the unit of this adjunction given by n.. Since G is full and faithful the
counit of the adjunction is also an isomorphism.

(ii)) = (i): The unit and counit of the adjoint equivalence are isomorphisms. O

It is important to observe that the above definition of an equivalence of categories is symmetrical in F and
G. Therefore by the above proposition, it follows that both F { G and G {F. Because of the above
proposition, we use the term equivalence of categories in place of adjoint equivalence in what follows.
Two categories C and D are equivalent if there exists an equivalence of categories between them. and we
write C = D.

Proposition A6:  Every adjunction <F,G,p,n,e> : C = D restricts to an equivalence of categories C' ~ D/,
where C' is the full sub-category of C consisting of objects ¢ such that n, is an isomorphism, and D’ is the
full subcategory of D consisting of objects d such that ¢, is an isomorphism.
Proof:

We need only the check that the restrictions of F and G are well-defined.

Suppose that ¢ € obj(C"). Then e o Fne = 1z, = &g, = Fn,' since 1, is an isomorphism.

.". €f 1S an isomorphism = Fc e D'.

Suppose that d € obj(D’). Then Geg ° Nga = lga = Mga = Gey™' since g4 is an isomorphism.

.. Mad 1s an isomorphism = Gd € C'.

" Flo : C" > D" and Glp : D' — C' are well-defined and so form an equivalence of categories. O

9



LIMITS
The Standard Definitions

Let J and C be categories. We define the diagonal functor A : C — [J,C] where Ac : J — C is the functor

that maps every object of J to ¢ and every arrow to 1.. The arrow mapping for A takes f: ¢ — ¢’ to the
natural transformation whose components are all f.

Consider T € [J,C]. Then the limit of T consists of an object lim(T) of C along with an isomorphism
C(c,lim(T)) = [J,C](Ac,T) natural in c.

Thus we have a natural transformation < : Alim(T) e— T universal from A to T which we call the limiting
cone (or universal cone). We will abuse notation and write t : im(T) e— T. A (not necessarily universal)
cone from c to T is a natural transformation Ac e— T which we will usually write as ¢ e— T.

By the Yoneda lemma, any object defined by a natural isomorphism in the way that lim(T) is above is
determined up to isomorphism.

When J is a discrete category consisting of two elements j, and j,, Tj; = A and Tj, = B, the limit of T is the
product A x B and the isomorphism above amounts to saying that:

Kbl _ gogy PO

for each pair of arrows f; and f,, 3! f such that the above diagram commutes where p, and pg are the
components of the limiting cone. When C = Set we see that A x B = {(a,b) : a € A and b € B} as usual.

When J is the category that has two objects and the following non-identity arrows:

u

T I

h ;Jz
%

andTj; =X, Tj,=Y, Tu=aand Tv= g then E = lim(T) is known as an equaliser and the isomorphism
amounts to saying that:

a
E—= - sx
b
g f
w
for each f'such thata o f="b o f, 3! g making the triangle commute. Here the components of the limiting
concareeandaoe=boe When C=Set, Z={x € X: a(x) =b(x)}.

Y

When J is the category that has three objects and the following non-identity arrows:

10



i > 3 J2

andTj; = A, Tj;=B, Tj3=C,Tu=aand Tv=b, then P = lim(T) is known as a pullback and the
isomorphism amounts to saying that:

X

f, P Pa B

A C
a

for each (fi,f;) where a o f; = b o f;, 3! f making the triangles commute. The components of the limiting
cone are pa, pg and a o pa = b o ps. The notation A xc B for P is commonly used.

When C = Set, P = {(x,y) € AxB : a(x) = b(y)}. Furthermore if m is any arrow of C it follows that m is
monic precisely when the following square is a pullback square:

1

Finally we remark that when J is empty lim(T) is a terminal object of C.

Limits need not always exist. We say that the category C is complete when it has all small limits. That is
for any small category J, and any functor T : ] — C, the limit of T exists in C. We say that C is finitely
complete when it has all finite limits.

It can be shown that if C has all set indexed products (all limits where J is a set) and all equalisers, then it
is complete. Similarly if C has finite products and equalisers then it is finitely complete.

The above discussion can be dualised. The colimit of T consists of an object colim(T) of C along with an
isomorphism:

C(colim(T),c) = [J,C)(T,Ac) natural in c.

and we have a limiting cocone (or universal cocone) t : T e—> colim(T). We can define coproducts (which
are disjoint unions in Set), coequalisers and pushouts in the same fashion. The property of epicness can be
expressed as a pushout. The empty coproduct is an initial object. If C has all set indexed (finite)
coproducts and all coequalisers, then it is (finitely) cocomplete.

11



Finally we observe that given a functor T : ] — C, the universal cocone T e—> colim(T) is jointly epi,

dually the universal cone lim(T) e— T is jointly monic. This just amounts to the universality of the
(co)cone.

Proposition L1: Limits exist for all T  [J,C] iff A has a right adjoint. Moreover, if we let w:Se>Tfor
S, T € [1,C], and o and t denote the universal cones of S and T, then yo 5 =10 Alim().
Proof:
Suppose limits exist for all T € [J,C]. Then we have the functor A, the object mapping lim which
takes T — 1im(T), and the universal cone lim(T) e— T for each T € [J,C]. Thus by proposition
A2(i) we have determined an arrow mapping for lim : [J,C] — C and the adjunction A 4 lim.
Suppose A has right adjoint G. Then by definition it follows that VT e [J,C], lim(T) = GT.
The second sentence follows from the universality of . 0

Let T € [J,C] and F € [C.D]. Then F creates limits for T when:

(i) Each cone t: c e— T such that Fr : Fc e— FT is a universal cone, is itself universal.

(ii) For each universal cone \p : d e— FT, there is a universal cone t : ¢ e— T where Ft = W.
When F satisfies (i) above we say that it reflects limits for T. We say that F preserves the limits of T when
each universal cone t : ¢ e— T yields a universal cone Frt. If F preserves all small limits that exist in C,

then we say that F is continuous. It can be shown that if F creates limits for T and FT has a limit, then F
preserves the limit of T.

Weighted Limits and Colimits

Consider the equivalence relation on obj(C) generated by a ~ b if 3 f: a — b. Then the connected
components of C is the class of equivalence classes under this relation, and is denoted by 75(C).

Proposition L2: Consider Al : J — Set. Then my(J) = colim(A1).

Proof:
Consider any cocone  : Al e— x. Then each component of  distinguishes an element of x.
Suppose f € J(a.b), then the naturality of  dictates that y, and \p;, distinguish the same elements
of x. That is, y can be considered as a function obj(J) — x that respects the equivalence classes of
To(J). Thus, T : Al e— my(J) where t,(0) = equivalence class of a in my(J), must be universal. []

Consider S  [J,Set], then el(S), the category of elements of S, is defined as follows:
obj(el(T)) = {(a, x) : a € obj(J), x € Ta}.
arrows are given by f, : (a,x) — (b,y) where f € J(a,b) and Tf(x) = y.

We have a projection functor P(S) : el(S) — J given by f, - f.

Consider S  [J,Set] and T € [J,C]. Then the limit of T weighted by S consists of an object lim(S,T) of C
along with an isomorphism C(c,lim(S,T)) = [J,Set](S,C(c,T)) natural in c.

Part of the usefulness of weighted limits springs from the fact that they are a more expressive general
concept than ordinary limits although they can be constructed in terms of them. We will be more precise
about this below, and then use this fact to prove a general statement about colimits of set valued functors.

Lemma L3: [J,C](Ac,T) = [J,Set](A1,C(c,T)) naturally in c.
Proof:

[J.CI(AC.T) = {(c & Ta)aconj : Natural ina} = {(1 > C(c,Ta))acobjy : Natural in a}
= [J.Set](Al, C(c,T)). Itis easy to check that these bijections are natural in c. 0

12



Lemma L4: [el(S),Set](A1,C(c,TP(S)) = [J,Set](S,C(c,T)) naturally in c.
Proof:

[el(S),Set](AL,C(c,TP(S)) = {(1 = C(c.,TP(S)(a,&))acobjr.xesa : NAtural in a}
= {(1 = C(c,Ta))acobj(r.aesa : Natural in a} = {(Sa = C(c.Ta))acobjcy : natural in a}
= [J,Set](S,C(c,T)) naturally in c. 0

Proposition L5: (Ordinary limits are weighted limits) 1lim(T) = lim(A1,T).
Proof:

Cle,lim(T)) = [J,C1(Ac,T) = [J.Set](A1,C(c,T)) = C(c,lim(A1,T)) naturally in c. ad

Proposition L6: (Weighted limits are ordinary limits) lim(S,T) = lim(TP(S)).

Proof:
C(c,lim(S,T)) = [J,Set](S,C(c,T)) = [el(S),Set](A1,C(c, TP(S)) = C(c,lim(A1,TP(S))) naturally in
¢, so that lim(S,T) = lim(A1,TP(S)) = lim(TP(S)). a

Let S € [J% Set] and T & [J,C]. Then the colimit of T weighted by S is an object colim(S,T) of C and an
isomorphism C(colim(S, T),c) = [J*®,Set](S,C(T,c)) natural in c.

Now, C(lim(S,T),c) = C*®(c,lim(S,T*)) = [J*,Set](S,C®(c, T%) = [J*,Set](S,C(T,c)) = C(colim(S,T),c)
naturally in ¢, so that colim(S,T) = lim(S,T°?). Thus the above results for weighted limits can be translated
into results for weighted colimits. That is, colim(A1,T) = colim(T) and colim(S,T) = colim(T(P(S))?).
Next we characterise colimits of set-valued functors.

Proposition L7: Let S e [J,Set] and T e [J,Set]. Then colim(S,T) = colim(T,S).

Proof:
Set(colim(S,T),x)) = [J°,Set](S,Set(T,x)) = [I*,Set](T,Set(S,x)) = Set(colim(T,S),x) naturally in
X, so that colim(S,T) = colim(T,S). O

Proposition L8: Let T e [J,Set]. Then colim(T) = my(el(T)).
Proof:
colim(T) = colim(A1,T) = colim(T,Al) = colim((A1)(P(S)))
= colim(Al : el(T) — Set) = mo(el(T)). 0

We can think of a cocone T : T e— ¢ as being a function obj(el(T)) — ¢ given by (t,x) > T(x). Denote the

equivalence relation that gives rise to my(J) as ~. Then a direct corollary of L8, and the fact that universal
cocones are jointly epic is the following:

Corollary L9: Lett: T e— c be a cocone as in the preceding paragraph. Then t is universal iff it
satisfies the following:

(i) The components of t are jointly surjective.
(ii) The kernel relation of the function < : obj(el(T)) — c is precisely ~.

We do in fact require a special case of this corollary in our section on topological sheaves.

Corollary L10: Let J be a directed set and T e [J,Set]. A cocone t : T e— c is universal iff it satisfies the
following properties:
(i) The cocone is jointly surjective.
(i) Ift, s € obj(J) and x € Tt and y € Ts where T(x) = ,(y), then I f: t - u and g :s —>usuch
that Tf(x) = Tg(y).
Proof:
Since J is a preorder (t,x) ~ (s,y) in el(T) iff 3f: t > uand g : s — u such that Tf(x) = Tf(y). The
result follows by the above corollary. 0
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A nice characterisation for weighted limits of set-valued functors, and an easy proof of the continuity of
representable functors springs from the following:

Lemma L11: For S,T e [J,Set], Set(x,[J,Set|(S.T)) = [J,Set](S,Set(x,T)).
Proof:
Set(x,[J,Set](S,T)) = {(Sa > Ta)acobj(r), yex : Natural in a} = {(x x Sa —> Ta)acobic : natural in a}
= {(Sa — Set(X,Ta))acobin : Natural in a} = [J,Set](S,Set(x,T))
and these isomorphisms are natural in x. O

Corollary L12: Let S,T e [J,Set]. Then lim(S,T) = [J,Set|(S,T).
Proof:

Set(x,[J,Set](S.T)) =[J,Set](S,Set(x.T)) = Set(x,lim(S,T)) naturally in x. 0

Consider S € [J,Set], T € [J,C] and F € [C.D]. Then F preserves limits for T weighted by S when
F(lim(S,T)) satisfies the defining property of lim(S,FT). If F preserves all limits (which means by L6 that
is preserves all weighted limits) then we say that F is continuous. Dually, F is cocontinuous when it
preserves all (weighted) colimits. We say that F is left exact when it preserves all finite limits. Dually, F is
right exact when it preserves all finite colimits.

Corollary L13: Representable functors preserve weighted limits.

Proof:
Suppose S € [J,Set], T € [J,C] and that lim(S,T) exists so that C(c,lim(S,T)) = [J,Set](S,C(c,T)).
Consider the representable functor C(x,-) € [C,Set].
Then, Set(X, C(x,lim(S,T)) = Set(X, [J,Set](S,C(x,T))) = [J,Set](S, Set(X,C(x,T)) naturally in X.
That is, C(x,lim(S,T)) = lim(S,C(x,T)). O

We now investigate weighted limits and colimits for functor categories.

Proposition L14:  Suppose that C has limits weighted by S € [J,Set] and that K is some other category.

Then [K,C] also has limits weighted by S and they are formed pointwise.

Proof:
Suppose that T : J — [K,C]. Then by the standard adjunction [J x K,C] = [J,IK,C]] natural in J
and C, we can consider T : J x K — C. Thus, Vk € obj(K) we have a functor T(=k):J>C.
In fact we have a functor K — [J,C] where k - T(-,k). From L1 we know that ordinary limits
are functorial. Thus by L6, lim(S,T(-.k)) = lim(T(~,k) o P(S)) must be functorial in k. We denote
this functor as lim(S,T(-,-)).
Now, [K,C](t,lim(S,T(-,~))

{t e—> lim(S,T(-,-))}

{(t(k) = lim(S,T(=.k)))keobjx) Natural in k}

{(S o> C(v(k),T(=.K)))keobjcx) natural in k}

{Sj—> C(t(k),T(j,k)))onbj(;)_ keobjk) Datural in j and k}
{(SJ = [KsC](‘rvTGs—)))jeobj(I) natural an}

= {S e [K.CI(v,T(--)} = [J.Set](S,[K.C](t, T(~,-))).
since Vk € obj(K), C(c,lim(S,T(-,k))) = [J,Set](S,C(c,T(-,-))) naturally in c.

That is, we have proved that lim(S,T(-,~)) = lim(S,T). a

I e m

Since Set is complete and cocomplete, a direct corollary of the above result (and its dual) is that [C,Set] is

complete and cocomplete for any category C. Recalling the Yoneda imbedding Y : C — [C®" Set], we have
a further corollary:
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Corollary L15: The Yoneda imbedding preserves limits.
Proof:
Consider T : J - C such that lim(T) exists.
For any ¢ e obj(C), L13 says that C(c, lim; Tj) satisifies the defining property of lim; C(c, Tj).
Thus by L14 it follows that C(~, lim, Tj) satisifies the defining property of lim; C(-, Tj).
But, C(-, lim; Tj) is just Y(lim(T)) whereas lim; C(-, Tj) is just lim(YT). d

Weighted limits are preserved by adjoint functors. Specifically we have the following:

Proposition L16:  Suppose <F,G,¢p,n,e>: C = D. Then G preserves weighted limits and F preserves
weighted colimits.
Proof:
Let S € [J® Set] and T e [J,C] and suppose colim(S,T) exists.
Then, D(F(colim(8.T)),d) = C(colim(S,T),Gd) = [J%,Set](S,C(T,Gd)) = [J°,Set](S,D(FT ,d))
naturally in d. so that indeed F(colim(S,T)) = colim(S,FT).
By duality, G preserves weighted limits. O

Proposition L17: Suppose <F,G,p,n,e>: C = D, G is full and faithful, and C is cocomplete.
Then D is cocomplete.
Proof:
Let T :J — D. Then since G is full and faithful, [J,C](GT,AGd) = [J,D](T,Ad).
- D(F(colim(GT)),d) = C(colim(GT),Gd) = [J,C](GT,AGd) = [J,D](T,Ad).
That is, F(colim(GT) satisfies the defining property of colim(T).
Since C is cocomplete, colim(GT) always exists = colim(T) always exists. g

Dually if F is full and faithful and D is complete, then C is complete. Taking these together we see that if
C ~D and C is (co)complete, then D is (co)complete.

Let T : P — [J,C] be a functor and C be complete. By L14 T has a limit limp(T) which is formed
pointwise. Since C is complete we can evaluate lim;(limp(T)) or “reverse the process” by taking limp(lim; o
T) where lim; : (J,C] — C is the limit functor considered in L1. The question here is whether these
alternative limits satsify each others’ defining properties (does it matter in which order we take limits?).
Equivalently, we are asking whether lim; preserves limits. This question is easily answered since by L1,
lim; has a left adjoint, and so by L16 preserves limits. Dually, colimit functors preserve colimits. It follows
easily by L6 that the same results hold for weighted limits and colimits. That is, functors of the form
lim(S,-) and colim(S,-) preserve (weighted) limits and colimits respectively.

We may. now ask whether limit functors preserve colimits and vice versa. In general this is not true
however it is true in certain cases.

A category J is filtered when the following conditions are satisfied:
(1) Forany j, j' € obj()), there isk € J and arrows j — k and j’ — k.
(1) For arrows u,v : i — j, there is an arrow w : j — k such that the following diagram

commutes:
/J \
U w
i k
j

For example a directed set is a filtered category (arrows are given by the preorder relation).
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Suppose that J has all finite colimits. Then the existence of coproducts is enough to ensure that J satisfies
(1). The existence of pushouts is enough to ensure that condition (i1) is satsified. Thus if J has finite
colimits, then it is filtered. We state the following standard result without proof:

Proposition L18: Let J be a small filtered category. Then colim; : [J,Set] — Set is left exact.
Recall the Yoneda imbedding Y again. We have the following useful consequence of the Yoneda lemma:

Proposition L19: Let P € [C*™ Set]. Then P = colim(P,Y).
Proof:
By the definition of weighted colimit [C*,Set](colim(P.Y),Q) = [C°P,Set](P,[C*,Set](Y-,Q))
naturally in Q. However, by Yoneda’s lemma [C,Set](Y-,Q) = Q naturally in Q.
= [C*,Set](colim(P,Y),Q) = [C*,Set](P,Q) naturally in Q.
. by Yoneda’s Lemma (again) we have colim(P,Y) = P. O

Let F e [J,C] be a functor for which all colimits exist. It is of interest to consider object-mappings of the
form colim(—,F) : [J°°,Set] — C. To this end we have the following result:

Proposition L20: For F € [J,C] the colim(-,F) is the object mapping of a functor that has a right adjoint.
Proof:
For P e [J°,Set] we note that D(colim(P,F),d) = [J°°,Set](P,D(F-,d)) naturally in d.
Define the functor D(F-,-) : D — [J°,Set] on arrows as f — D(F-.f) as in the proof of IC1.
Thus, we have determined a functor D(F-,-), an object mapping colim(-,F) and VP e [T°P,Set]
an arrow np : P — D(F—,colim(P,F)) universal from P to D(F-,-).
. A2(i) determines the arrow mapping for colim(—,F) and that colim(-F) {D(F--). 0O

This of course means that colim(—,F) preserves weighted colimits. Dually, the functor lim(-,F) preserves
weighted limits.
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COMMA CATEGORIES AND KAN EXTENSIONS

Comma Categories

Now we study comma categories of the form (1c4Ax) and (Ax¥ 1c) for x € obj(C). We denote these
categories as C4x and x{C respectively.

Proposition CK1: If C is (finite/small) complete then Cx is (finite/small) complete.

Proof:
Suppose that C is (finite/small) complete. Let T : J - Cdx be a functor where J is a (finite/small)
category. Let J; be the category J with a terminal object adjoined to it. That is, obj(J,) = obj(J) u
{t} and arr(Jy) = arr(J) U {j > t : j € obj(J)}. Then J, is (finite/small) whenever J is, and T can be
viewed as a functor T, : J, — C where o — TP(a) when o was an object or arrow of J (and P is
the first projection of the comma category Cix), t — x and (j = t) = T(j). By hypothesis, lim(T,)
exists, and by composition along any component of the universal cone to x, we obtain an arrow
lim(T,) — x that is the vertex of a cone to T in C¥x. The universality of this cone follows directly
from the universality of lim(T,) e— T, in C. O

The dual of this statement says that C is (finite/small) cocomplete = x4C is (finite/small) cocomplete.
By much the same reasoning as in the above proof, we see that P : Cyx — C creates equalisers and
pullbacks, but that products in C{x correspond to certain pullbacks in C.

An interesting aspect of comma categories is that they can be used to express various categorical concepts
in terms of each other. First we relate initial objects to limits by noting that for G € [D,C], an arrow u is

universal from ¢ to G iff u is initial in c4G, and dually that u is universal from G to ¢ iff u is terminal in
Glc.

Lemma CK2: G e [D,C] has a left adjoint iff V¢ € obj(C), c!G has an initial object.
Proof:

V¢ e obj(C), cLG has an initial object < Vc € obj(C), 3 a universal arrow ¢ — G(Fc) for Fc
obj(D) < F is the object mapping of a left adjoint to G. O

Lemma CK3: Consider T € [J,C]. J has an initial object ¢ = T has limit Te.
Proof:

Let e be the initial object of J and consider the cone t : Te e— T where T, = Ta, where a, : ¢ — a
is the unique such arrow. Suppose \y : ¢ e— T is another cone. Then, Va e obj(J)

AN

Te ——>Ta Te ——~> Te

a Te

the diagram on the left shows that t o\, =\, and the diagram on the right shows that . is the
unique such arrow ¢ — Te, so that  is a limiting cone. O
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Lemma CK3: Ift:e e— lcisaconeand <T : e e— T is a limiting cone for T e [J,C] then e is an initial
object in C.
Proof:

For a e obj(J) and f € arr(C) the triangles:

ANVANAN

e ——-——%Ta e —————>Ta

Ta Ta

commute since T is natural. Since T is universal, the first two diagrams prove that t, = 1., from
which it follows by the third diagram that f = 7, making e initial. O

In particular, if J = C, T = 1¢ and lim(1¢) exists, then lim(1¢) is initial in C. That is, lim(1c) exists iff C
has an initial object. Next we obtain a limit criterion for the existence of adjoints.

Lemma CK4: If G € [D,C] preserves limits then the projection Q : c{G — D creates limits.

Proof:
(i) Consider the functor T : J — ¢4 G and the cone < : go—> Twhere Qt: Qge—> QTisa
limiting cone. Then since G preserves limits, GQt : GQg e— GQT is a limiting cone. Consider
any other cone y : h e— T. Then GQy is also a cone and 3! arrow f : GQh — GQg where GQr o
f= GQy. Observe that by the definition of G and Q, Vk € obj(c{G) we see thatk : ¢ — GQk.
Furthermore, we identify the components 1, with GQr, for a € obj(J).
Thus, Va € obj(J), . o f =y, and the components 7, are jointly monic (since GQr, are).
But, Va € obj(J), Ta=y, o h=1,0 g since t and y are cones, so that T, o foh=1, 0 g.
Thus, f o h = g making f the unique arrow in c!G where to f=y = tisa limiting cone.
(if) Consider the limiting cone o : w — QT. Since G preserves limits, Go is also a limiting
cone, but by definition the arrows g, : ¢ - GQTa are components of a cone q : ¢ e— GQT so that
3!u: ¢ — Gw such that q = Go o u. But this says that we have a cone t : u e— T given on
components by 1, = Go, : u - Ta where Qt = .. O

Proposition CK5: G e [D,C] has a left adjoint iff:
(i) G preserves all limits that exist in D.
(i) Vc € obj(C), 1im(Q : cIG — D) exists in D.

Proof:
Suppose that G has a left adjoint. Then G preserves limits by L16. Furthermore, since ¢4 G has an
initial object, we see that Q : c4G — D must have a limit.
Suppose G satisfies (i) and (ii). V¢ € obj(C), by (ii) the composite Q o .. has a limit, and by (i)
Q creates limits, so that 1. must have a limit = cJG has an initial object. O

We can also express the representability of set-valued functors and the existence of universal arrows in
similar terms:

Proposition CK6: K e [C,Set] is representable iff:
(i) K preserves all limits that exist in C.
(i) The projection Q : 14K — C has a limit in C.
Proof:
Suppose K is representable. Then K preserves limits by L13. Let K = C(r,~) for r € obj(C). Then
the Yoneda lemma says that 1, is initial in K = Q has limit r.
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Suppose that K satisfies (i) and (ii). We use the same argument as in the previous proposition to
prove that 1, has an initial object. We identify this with e € Kr for r  obj(C). Then we have a
natural isomorphism K = C(r,-) determined by e - 1, by the Yoneda lemma. O

Corollary CK7: For G € [D,C] and c € obj(C), there is a universal arrow from c to G iff:
(1) C(c,G-) preserves limits.
(i) lim(Q : cG — D) exists in D.

Proof:
There is a universal arrow from ¢ to G iff C(c.G-) = D(r,-) forr € obj(D), that is iff C(c,G-) is
representable. Furthermore, there is a natural identification between 14C(c,G-) and c{G. In this
way this corollary reduces to the previous proposition. O

Kan Extensions

ConsiderK € [M,C] and T € [M,A].
Consider also the functor [K,A] : [C,A] — [M,A] given by [5 : S e— ST [oK : SK e— S'’K].

A right kan extension of T along K is a functor RankT € [C,A] along with an isomorphism:
[C,A](S,Ran,T) = [M,A](SK,T) natural in S.

This isomorphism determines and is determined by a natural transformation ¢ (Ran,T)K e— T universal

from [K,A] to T, known as the counit of the extension.

Dually, a left kan extension of T along K is a functor LangT e [C,A] along with an isomorphism:
[C,A](Lan,T,S) = IM,A|(T,SK)  natural in S.

This isomorprism determines and is determined by a natural transformation N : T e— (LanT)K universal

from T to [K,A], known as the unit of the extension.

By definition, each T € [M,A] has a (left) right kan extension iff [K,A] has a (left) right adjoint (which
Justifies the use of the terms unit and counit in the above).

Now we give the construction of the right kan extension as a “pointwise” limit:

Proposition CK8: Adopting the above notation, let Q. : c¢K — M denote the second projection for c €
0bj(C), and suppose V¢ € obj(C) that TQ. has a limit. Then the object mapping Rc = lim(TQ,) determines
the functor R e [C,A] that is a right kan extension of T along K, with counit ¢ : RK e—> T as €m = (Tkm)
where 1 denotes the arrow lg, € Km{K and . : Rc o— TQ. is the limiting cone.
Proof:
First we prove that the object mapping of R yields a functor that commutes with the cones Te:
Let g : c —d € arr(C). Then g induces a functor g{K : d{K — c{K where h — h o g,
so that by definition Q, o gdK = Q. That is, we can regard the image of g{K as a
subcategory of cyK on which the projections Q. and Qg agree. Thus 1. can be restricted
to a cone Rc e— TQq so that 3! arrow Rg : Rc — Rd by the universality of t,.
Note also that t4 o Rg = 7. so that the R commutes with the limiting cones ..
Now, the mapping C — Cat given by g — glK is a functor and taking restrictions of <,
as above is also functorial, so that the arrow mapping described here is functorial.
Next we verify that R is indeed a right kan extension with the stated counit:
We wish to prove that [C,A](S,R) - [M,A](SK.T) given by ¢ - ¢ o ¢K is an
isomorphism. So for o : SK e— T we will show 3! ¢ : S e—> R with & o oK = o
First we construct a cone o : Sc e— TQ,. For f : ¢ — Km in c{K, let (0c)¢ = Ol o SF.
This is natural in fsince o is natural in m. Since <. is a limiting cone, 3! ¢, : Sc - Rc
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such that (t.)¢ o ¢ = (0c)¢ = o o Sf. To prove ¢ is natural, let g € C(c,d), h : d - Km in

d{K so that:
Sc b Rc
S(hog) (Tc)/
Sg SKm —= > Tm Rg
A (Tan
Sd » Rd

the two triangles and the two inner-most quadrilaterals are all commutative. A diagram
chase thus reveals that (tq)n © Rg o ¢ = (tq)n © ¢4 © Sg, and since this equation holds for
all h e dVK, and the components of <. are jointly monic, it follows that Rg o ¢, = ¢4 o Sg
so that ¢ : S e— R. Setting d = Km and h = I, the bottom inner quadrilateral yields the
relation ey © ¢xm = Oty SO that indeed, o = € o K. We have proved the existence of ¢.
Suppose now that we are given ¢ : S e— R where o = € o $K. Let f : ¢ — Km in cdK,
then let d = Km, h = Ix, and g = f in the above diagram. Then a =€ o oK means that
the bottom inner quadraliteral commutes, the two triangles commute by definition and
the outer rectangle commutes since ¢ is natural. A diagram chase reveals that the upper
quadrilateral commutes which means that (tc)¢ o ¢ = oty © S = (o);, which by the
universality of T, makes ¢. unique. O

The dual result yields the formula Lc = colim(TP,) for the pointwise construction of the left kan extension
of T along K, where P, : Kdc — M is the first projection. The unit is Ny, = (Txw); Where <, : TP, e— c is
the limiting cocone. We have a number of corollaries from the above proposition:

Corollary CK9: If M is small and A is complete, then [K,A] has a right adjoint.

Proof:

Since M is small and K e [M,C] it follows that c4K is small V¢ 0bj(C). Thus, VT e [M,C] and
¢ € obj(C) the functors TP, have limits because of the completeness of A.

Thus, every T e [M,C] has a right kan extension along K that is constructed pointwise as in the
above proposition. Hence we have a functor [K,A] : [K,C] — [K,M], along with an object
mapping Rang(-) : [K,.M] — [K,C], and for each T € [K,M] an arrow &7 : Rang(T)K e—> T
universal from [K,A] to T. By proposition A2(ii) we see that Rang(-) is the object mapping for a
functor that is a right adjoint to [K A]. O

Dually, if M is small and A is cocomplete, then [K,A] has a left adjoint whose object mapping is Lang(-).

Corollary CK10: If the hypotheses of the proposition are satisfied and K is full and faithful, then the
counit of the right kan extension is an isomorphism.

Proof:

For each m € obj(M) we evaluate RKm = lim(TQx,,). Since K is full, every g ¢ C(Km,Km') is of
the form g = Kf for f € M(m,m’). Thus, Vg € obj(Km{K) we see that g=Kf: lxn—> g

Suppose that f € Km{K(lgn,g), then Kf o Iy, = Kf = Kf, but since K is faithful, f = f which
shows that KmK(lgm,g) = {f}. That is, Km{K has initial object i, so that we evaluate
lim(TQkm) as TQxm(1km) = Tm with (tg,)e = Tf so that €, = Lk O
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Dually, if the hypotheses to the dual of the proposition are satisfied and K is full and faithful, then the unit
of the left kan extension is an isomorphism. Letting K be a subcategory and K : M > C in the above

corollary, given T : M — A we obtain genuine extensions of T to C as right and left kan extensions of T
along K.

Continuing to adopt the above notation we say that G € [A,X] preserves the right kan extension of T
along K when G(RangT) satisfies the defining property of Ran,GT.

Proposition CK11: Right adjoints preserve right kan extensions.
Proof:

Assume that RangT exists and that G € [A,X] has left adjoint F € [X A].

Then, [C.X](S,G(RankT)) = {(Sc - G(RangT)C)ceovjc) : Natural in ¢}
{(FSc — (RangT)C)ccobjic) : natural inc} since F{G
[C.A](FS,RanT) = [M,A](FSK,T) by the property of RangT
{(FSKm — Tm)ncobjov : Natural in m}
{(SKm — GTm)neobjv - Natural in m} since F{G
M.X](SK,GT) and each step is natural in S. O

I

Il

mn

For a category A, r € obj(A) and a set X, the copower of a by X is an object [I,.x a. We often write Xea to
denote this object, and it is clear that —ea : Set — A given on objects by X > Xea determines a functor.

Corollary CK12: In the above notation, if A has all copowers and is locally small then representable
functors preserve right kan extensions.
Proof:
Consider the representable A(a,~) : A — Set and define RangT as above.
Observe that A(Xea,r) = A(Lkex a, 1) = [iex A(a,r) = Set(X,A(a,r)) naturally in X and r so that
—ea { A(a,-) so that A(a,—) preserves right kan extensions. ad

A kan extension is pointwise if it is preserved by all representable functors. The following proposition
gives the reason for this name:

Proposition CK13: T has a pointwise right kan extension along K iff the limit of TQ, exists Vc € obj(C).
Proof:
Suppose that lim(TQ,) exists V¢ € obj(C). Then Rc = lim(TQ,) defines a right kan extension to T
along K, and since representables preserve limits, we see that R must be pointwise.
Suppose that we have a pointwise RangT € [C,A]. Pointwise means that:
[C.Set](S, A(a,RanyT)-)) = [M,Set](SK, A(a,T-)) naturally in S
and substituting C(c,-) in this equation gives us:
[C.Set](C(c,-), A(a,(Ran,T)-)) = [M,Set](C(c,K-), A(a,T-)) naturally in ¢
but the left hand side of this is isomorphic to A(a,(RangT)c) naturally in ¢ by yoneda’s lemma.
Now, [M,Set](C(c,K-), A(a,T-)) = {(C(c.Km) - A(a,Tm))meobjo : Naturally in m}
= {(a > TM)oncix : naturally in £} = [clK,A](Aa,TQ,)
and this bijection is natural in c. Thus, A(a,(RangT)c) = [chK,A](Aa,TQC) so that Ran,T satisfies
the property of lim(TQ,). O

We are now in a position to express the limits, weighted limits and adjunctions in terms of certain kan
extensions.
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Proposition CK14: (limits and kan extensions) Let T e [J,C] and let ! € [J,1] be the unique such functor.
Then lim(T) can be identified with Ran,T.
Proof:
By definition, [1,C](c,Ran/T) = [J,C](c!.T) naturally in c. But [1,C] can be identified with C and
c and Ran T as elements of C, and c! is the same as Ac. 0

Dually, colim(T) can be identified with Lan,T.

Proposition CK15: (adjoints and kan extensions) G € [D,C] has a left adjoint iff it preserves all limits
and lp has a pointwise right kan extension along G. In this case the left adjoint is given by Ranglp.
Proof:
We saw in CKS5 that G has a left adjoint iff it preserves limits and lim(Q, : c{G — D) exists Vc.
In fact by the proof of CK2 the left adjoint is given by Fc = lim(Q.). The result follows since
Rang1p(c) = lim(Q,) by CK8. g

Dually, the right adjoint for F € [C.D] is given by Langlc.

Proposition CK16: (weighted limits and kan extensions) Let S € [J,Set] and T e [J,C]. Then if a
pointwise right kan extension exists for T along S, then RansT(1) satisfies the defining property of
lim(S, T) where 1 denotes the one point set. Conversely, given K € [M,C]and T € [M,A], T has a
pointwise right kan extension iff lim(C(c,K-),T) exists V¢ € obj(C), with RangT(c) = lim(C(c,K-),T).
Proof:

First suppose S € [J,Set] and T € [J,C] and that a right kan extension exists for T along S.

Then by L7, lim(S,T) = lim(TP(S)). However el(S) can be identified with 1{S and P(S) is just the

second projection Q. That is, lim(S,T) = lim(TQ,) = RansT(1).

Suppose K € [M,C] and T € [M.A]. We can identify 1{C(c,K-) with c{K and their second

projections. Thus, we have the following calculation:

lim(C(c,K-),T) = 1im(l¢C(c,K—) >J50)=limclK >J—>C)= RangT(c). O

Dually, the formula for the pointwise left kan extension is given in terms of weighted colimits as:
LangT(c) = colim(C(K-,c),T).

LetK : M — C and P, : K¢ — M be the first projection. We say that K is dense in C whenever
colim(TP,) = ¢ with colimiting cone made up of all the arrows of K{c. Dually, K is codense in C when
lim(TQ,) = ¢ with limiting cone made up of the arrows of c{K. A subcategory D of C is dense in C when
the inclusion D - C is dense in C. This is important because it means that every element of C is a colimt
of elements from D, so that every colimit preserving functor on C is determined by its values on D. By the
dual of CK13, K is dense in C iff 1 is a pointwise left kan extension of K along K.

For example, the Yoneda imbedding is dense in [C,Set] since LanyY(P) = colim([C®?,Set](Y-,P),Y), but
by the Yoneda lemma, [C*®,Set](Y-.P) = P and by L19 colim(P,Y) = P, so that LanyY(P) = P. That is,
Licop,set) 1S @ pointwise left kan extension of Y along itself. Therefore every P € [C,Set] is a colimit of
representables.

In what follows we denote the full subcategory of [[C,Set],D] that contains all the colimit preserving (ie
cocontinuous) functors as CoCts[[C®” Set],D].

Proposition CK17: Let D be cocomplete. Then [C,D] ~ CoCts[[C?,Set],D].
Proof:

Since D is cocomplete, Lany { [Y,D] by the dual of CK9. Since Y is full and faithful, ¥T e
[C.D], nr is an isomorphism, so that Lany is full and faithful and that l;cp; = [Y,D] o Lany.
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We claim that for F € [C,D], Lany(F) = colim(-,F):
Since D is cocomplete and by the dual of CK16, Lany(F)(P) = colim([C®,Set](Y-,P),F).
But by the Yoneda lemma, [C?,Set|(Y-,P) = P naturally in P.
.. VP € [C* Set], Lany(F)(P) = colim(P,F) naturally in P = Lany(F) = colim(-,F).
Recall from L20 that colim(—,F) has a right adjoint and so is cocontinuous.
.. Lany restricts to a full and faithful functor [C,D] — CoCts[[C?,Set],D].
To complete the proof we need to prove that for G € CoCts[[C,Set],D], G(P) = colim(P,GY).
But, L19 says that colim(P,Y) = P for P € [C",Set].
Since G preserves weighted colimits, G(P) = G(colim(P,Y)) = colim(P,GY) naturally inP. O
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SHEAVES ON TOPOLOGICAL SPACES

In this section we consider an arbitrary topological space X, and denote its category of open sets (objects
are open sets of X, arrows are inclusions) as ©(X).

A presheaf of sets on X is a functor P : ©(X)*® — Set. Elements of P(U) are called sections of P over U.
For x € X, consider the full subcategory N(x) of ®(X) consisting of the open sets that contain x. Then the
stalk of P at x is defined as P = colim(P|y(). For U an neighbourhood of x, and s € PU, we will often
write s, = Ty(s) where t is the universal cocone. The elements of P, are called germs. We say that x is the
base point of the germ y € P,.

Since colim can be viewed as a functor (dual of L1), for each x € X we obtain a functor [@(X)*,Set] —
Set where [y : P e— Q] > [wy : Py = Q4.

Proposition SI: A cocone T : Py e— c is universal iff it satisfies the following properties:
(1) The cocone is jointly surjective.
(i1) Suppose U, V € N(x) and t € PU and s € PV where t(t) = ty(s). Then 3 W e N(x) such
that W ¢ U~ V and P(W < U)(t) = P(W < V)(s).
Proof:
This is a direct translation of L10. O

A presheaf P is called a sheaf when it satisfies the following conditions for any open U < X and open
covering u; U;=U:
(i) The maps P(U; c U) : P(U) — P(U)) are jointly injective (monopresheaf property).
(i) Suppose Vi, s; € P(Uj) such that Vi,j, P(U; ~ Uj< Uj)(s) = P(U;~ U < U)(sj), then3s
P(U) such that Vi, P(U; < U)(s) = s; (glueing condition).

We now give an important example of a sheaf. Firstly let it : ®(X)®® > Top be the inclusion functor and
let Z be another topological space. Consider the functor Top(ix—,Z) : ®(X)® — Set. Consider U open in
X, and suppose U = Ui; Ui. Consider f, g € Top(U,Z). Then if flug = glug Vi € I, then clearly f= g so
that the monopresheaf property holds. Suppose that we have an I-indexed family {f; € Top(U,Z) : i € I}
such that Vi,j € I, filup~ug) = filui~ug- Then we can define the function f: U — X as f(x) = fi(x) where x €
Ui. Let Y be open in Z and let y € f'(Y) < U. Then, 3 U such thaty € U;and soy & £7(Y) = £(Y), and
since f; is continuous, ;' (Y) is an open neighbourhood of y. Thus, ' (Y) is open so that f is continuous.
That is, the family {f; € Top(U;,Z) : i € I} determines a unique f € Top(U,Z) and this is precisely the
glueing property. Thus Top(ix—,Z) is indeed a sheaf.

Continuing with this example, let x € X and suppose that f, g : U — Z where U € N(x). We say that f and
g belong to the same germ when they agree on some open subset of U. By S1 if follows that this notion of

germ corresponds to the general idea defined with presheaves above. »

We now present a categorical definition of sheaves.
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Proposition S2: A presheaf P is a sheaf iff for any open U ¢ X and open covering Ui.; U;= U, e is an
equaliser in the following diagram:

e S, S
P(U)—————>1Ii; P(U) 5 Mijer P(U; A Uy
b

where (a(u)))ijer = P(U; » Uj < U(w)), (b(w))ijer = P(U; N Uj < Uj)(wy), and (e(u))ie; = P(U; < U)(u).
Proof:

Since e is an equaliser in Set, ¢ is injective and P(U) can be identified with {(u;) € IT; P(U) : a(u;)
= b(u;)}. But the P is a sheaf equivalent to saying that P(U) can be identified with (monopresheaf
property) the set of (s;) € IT; P(Uj) that satisfy a(s;) = b(s;) (glueing condition). a

We can now define Sh(X) to be the full subcategory of [©(X)°,Set] that contains all of the sheaves on X.
Lemma S3: Suppose P € [©(X)™,Set] and S € Sh(X) and P = S. Then P € Sh(X).

Proof:
Suppose ¢ : P= 8. Let U € ©(X) and U = Ui U; for U; € ©(X). Consider the diagram:

P = ‘ :
(U)‘\ .‘ﬂniel PU) - 5 Mijer PUi Uy
putogn, 7
¢y . R . b2 3
‘Pz of
R "8 ...". ’
) 4 Vv N
SU) " [Tie; S(UY . 5 ijer SUi Uy
where:
(@@))ijer = PUi N U; < U(py), b(p))ijer = P(U; ~ Uj < Up(py), and (e(p))icr = P(U; < U)(p),
and similarly:

@())ijer = S(Ui 1 U; < U)(s), 0'(sp)ijer = S(Ui N Uj < U))(s)), and (€'(s))icr = S(U; < U)(s),

and finally (¢2)ic1 = ¢ug) and 93)ijer = duirnug)-

It follows by the naturality of ¢ that ¢, 0 e =€’ o ¢y, p30a=2a"o¢, and ¢s0b =10 ¢,.

Suppose thataof=bof Thena' o (pof)=¢s0(@acf)=¢so0(bof)=b" o (¢30f).

Since ¢’ is an equaliser (since S is a sheaf), 3!g such thate' o g = ¢, o f.

. ¢y o g is the unique arrow R — P(U) such that e o by ' og)=f = eisan equaliser. O

A bundle over X is an object of the comma category Top{X, that is, a continuous function into X. A

bundle is etale if it is a local homeomorphism. Let Et(X) be the full subcategory of TopdX consisting of
the etale bundles.

Lemma S4: Suppose p € Top{X and q € Et(X) and p=q. Then p € Et(X).
Proof:

Letp:Y - Xandq:Z — X. Since p = q, 3 a homeomorphism ¢ : Z —> Y where po ¢ = q.
Consider any y € Y. Since q is etale, 3 U € N(¢'(y)) such that U = q(U).
~y € $(U) = U = q(U) = p(p(L)). 0
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Define the functor [ : ®(X)® — Topd X which takes open sets to their inclusions, that is, U —> U % X.
The arrow mapping of I corresponds to restrictions of these inclusions.

We now construct a functor I : ToplX = [O(X)®,Set] as ['(p) = Topi«X(I—,p). Forp e TopiX and U e
O(X), it follows that ['(p)(U) can be identified with the set {s : ps =i : U > X}. The arrow mapping of [’
is defined by the dual of the Yoneda imbedding.

It follows that ['(p) is in fact a sheaf. Letting p : Y — X, we can identify TopX(I-,p) as a subfunctor of
Top(ix—,Y) which is itself a sheaf. Thus, the monopresheaf property must hold automatically for ['(p). As
for the glueing property, let Uic; U; = U, consider a family (f);c; and define f, all in the same way as in the
example. The only difference here is that Vi, p o f; : U > X by definition. Clearly, f is continuous by the
same argument as before. We need only verify that p o f: U X. Let x e U, then 3 U; such that x € U; so
that p(f(x)) = p(fi(x)) = x. Thus I'(p) is indeed a sheaf Vp € ToerX.

We shall now construct an object mapping L : [©(X)*®.Set] — TopdX. LetP e [©(X),Set], then we
define LP : [I;cx P, — X as the mapping that takes each germ to its base point. In order that LP be a

bundle we require a topology on [I,.x Py that makes LP continuous. To this end, for each open U in X and
s € PU, define a function si* : U — [lcx P by x = s,

Consider 8 = {sy”"(U) : U open in X and s € PU}. Suppose that r, € sy*(U) N ty(V), then s, = t, = r, and
U, V e N(x). Then by S1, 3 W € N(x) such that W < U n V and P(W < U)(s) = P(W = V)(t) =r € PW.
Now let w € W. Since the limiting cocone Py e—> P is natural, it follows that s,, = t,, = r,,. That is, we
have proved that r, € rw (W) < sy (U) N ty\(V), so that 2 is a base for some topology on [Ixcx P

We assign this topology to [I;.x Px. For U open in X, (LP)"(U) =uU {sv(V) : s € PV with V < U open}
is open, so that LP is continuous. In fact on sy*(U), sy is a continuous inverse of LP, making LP etale.

Proposition S5: L given above is the object mapping for a functor that is a left adjoint to I".
Proof:

Let P € [©(X)*,Set] and for U € O(X) define (mp)y : PU — I'LPU where s — si*. Then the
(np)u are the components for a natural transformation np : P e— I'LP:

Let Vc U, s € PUand t = P(V c U)(s) € PV. Consider any v € V.

By the naturality of the limiting cocone Py, e— P,, it follows that s, = t,.

Thatis, Vv € V, sy’ (v) = tyN(v) = sy =ty = np is natural.
Suppose we are given any ¢ : P e— I'p where p € Top{X. Let dom(p) = Y.

Define g : [lxex Px = Y as s, > ¢u(s)(x) where s € PU so that U e N(x). We claim that g is well-
defined as a function:

Suppose s € PU and t € PV where s, = t,.
Then by S1,3 W e N(x) where W < U ~ Vand P(W < U)(s) = P(W < V)(t) =r € PW.
By the naturality of ¢, it follows that ¢w(r) = du(S)lw = dv(t)|w.
< du(8)(x) = dw(n)(x) = dv(t)(x) so that g is indeed well-defined.
We claim that p o g = LP:
Consider any s € PU where U € N(x). Since ¢i(s) € 'p(U), we have p o dy(s) : U X.
< 880 = ¢u(s)(x) € p'{x} = pog=LP.
We claim that g is a continuous function:
Let G be open in Y. Then g"(G) = {8 du(8)(X) € G} = {5, : x € (¢u(s5)) (G)}.
Since ¢y,(s) is continuous, (¢1(s)) "' (G) is open in X so that g"'(G) € A.
. g can be identified with y : LP — p in TopyX.
Now, Vs € PU and x € U, (T'y o np)u(S)(X) = (g o st/)(X) = g(S¢) = du(s)(X) = [yomnp=o.
Suppose that y' : LP — p such that 'y’ o np = ¢. Then v’ can be identified with g’ : [I,.x Py > Y
where Vs € PU and x € U, g'(sx) = (g' o sy )(X) = ([Y o np)u(8)(X) = du(s)(X).
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. g'(sx) = g(s) = gis uniquely determined = mp is universal from P to T
- by A2(i) we see that L extends to a functor such that L {T". O

Lemma S6: If P is a sheaf, Uis open in X and s, s' € PU, then s=§' < Vx e U,s, =

Proof:
= follows by definition.
Suppose Vx € U, s, = §,. Then Vx € U, 3 V,, € N(x) where V, < U, such that P(Vic U)(s) =
P(V, < U)(s"). But the V form an open cover of U, so that by the monopresheaf property, the
maps P(V, c U) are jointly injective. Thus, s = s'. O

Proposition S7: For P € [©(X)™,Set], P € Sh(X) < np (defined in the proof of S5) is an isomorphism.
Proof:

(<) follows directly from S3 since I'LP is a sheaf.
Suppose that P is a sheaf and consider U € (X).
Fors, t € PU, (mp)u(s) = Mp)u(t) = s’ =t = Vxe U, s =t = s= t by S6.
. (np)u 1s injective.
Let f: U — [I,cx Px be a continuous finction where LP o f: U X.
To prove that (np)y is surjective we need to prove that 3 s € PU such that f = si.
Now, let t € PV for some V < U, then f (ty(V)) = {x € V: f(x) = t,} is open in X since f is
continuous. )
That is, for each V< U and t € PV we have an open set G(V, t) = {x € V : f(x) = t«y < U.
Now, for x € U, f(x) = s(x)x for some s(x) € PU, and U, c U, so that x € U,.
. X € G(Uy, s(x)) c U, so that these sets (for x € U) form an open cover of U.
Forx,y € X, G(U, s(x)) » G(Uy, s(y)) = {z € Uy~ Uy : f(z) = s(x), = s(y).}.
S Vz e Uy n Uy, s(x), = s(Y)..
= by 86, P(G(Uy, s(x)) N G(Uy, s(y)) < G(Uy, s(x))(s(x))
= P(G(Uy, s(x)) N G(Uy, s(y)) < G(Us, s¢)))(S(Y)).
. by the glueing condition, 3 s € PU such that Vx e U such that P(G(U,, s(x)) < U)(s) = s(x).
SVX e U f(x) = s(X)x = 8¢ = stN(X) = f=sy. ad

For p e Top{X, say p: Y — X, we claim that the maps €, : LI'p — p which can be identified with
continuous functions €, : [xex (Up)x = Y given by f, > f(x) are the components of the natural
transformation & : LI" e— 1ropux that is the counit of the adjunction L { T. Every element in [I.x (Up)y is
of the form £ for f € I'p(U) and U e N(X) since the limiting cocones I'pln) ®—> (I'p)« are jointly
surjective. Suppose that for U, V € N(x), we have f € I'p(U) and g € I'p(V) where f, = g,. Then the
functions f and g agree on some neighbourhood of x so that f(x) = g(x). That is, gp is well-defined as a
function [Iiex (I'p)x = Y. Let W be open in Y. Then

& (W)= {f € Lhex Tp) : f(x) € W} = g {fc: x € £(W)}
where the union is over all f € [p(U) for U € ©(X). But, since f'(W) is open it follows that sp"(W) is
open so that g, is continuous as a function [I,.x (Tp), = Y. Taking f € Ip(U), f(x) e p{x} = gp(f) €
p{x} = p o & = LIp so that &, is an arrow LI'p — p of Top{X.

[t remains to be shown that ¢ is the stated counit. To this end we will prove that ['e; o Mrp = 1pp S0 that the
result follows by the universality of nr,. Let U € ©(X). By definition Tep)u - TopiX(IU,LI" p) —
TopivX(IU.p) is given by £ g, o f. Thus, (I'ep)y © (Mrp)u () = gp o sy for s € ['p(U). However, for x € U,
(&p 0 SU™)(X) = £p(S¢) = 5(x), s0 that (Cey)y ° (Mrp)u = (Irp)u.
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Lemma S8: 1f g and h are local homeomorphisms, and f is a continuous function that makes the triangle:

commute, then f is a local homeomorphism.
Proof:
Leta e A. Since g is a local homeomorphism, 3 V e N(a) such that V = g(V).
Since h is a local homeomorphism, 3 W € N(f(a)) such that W = h(W).
But, g(a) = h(f(a)) so that g(V) n h(W) = & and open, where a € V and f(a) € W.
. we can write U = g(U) and g(U) = h(g(U)) where g(U) = h(g(U)) = g(V) n h(W).
U= h"(g(U)) so that by the commutativity of the triangle, f : U = f(U). O

Proposition S9: For p € ToplX, p € Et(X) < ¢, is an isomorphism.

Proof: '
(<) follows directly from S4 since LIp is etale.
Let p be etale. We need to show that €, : [I,ex (ITp)x = Yisa homeomorphism.
Suppose that f,, g, € [lxex (I'p)x and that f(x) = g(y), for f € [p(U), g € ['p(V), U e N(x) and
V € N(y). By definition, p™'{x} > f(x) = g(y) e p{y} = x=y.
Consider now the restrictions f, g € ['(p)(U ~ V). Since p and (U ~ V) > X are local
homeomorphisms, f and g are local homeomorphisms by S8. So, we can assume that 3 W e N(x)
such that p((W)) = f(W) = W = g(W). But Vw € W, p(f(w)) = p(g(W)) =w = fly = glw.
- fand g agree on some neighbourhood of x = f, = g,. That is, , is injective.
Suppose thaty € Y. Then since p is etale 3 W e N(y) such that W = p(W). Let f be the inverse of
p on W considered as f : p(W) — X. Then, f(p(y)) =y so that ep(foy)) = y. That is, €, is surjective.
Finally, p and LI'p are local homeomorphisms = &, is a local homeomorphism by S8. 0

Corollary S10: The adjunction of S5 restricts to an equivalence Sh(X) ~ Et(X).

Proof:
By 87, Sh(X) is the full subcategory of [©(X),Set] consisting of all the P for which np is an
isomorphism. By S9, Et(X) is the full subcategory of Top{X consisting of all the p for which ¢, is
an isomorphism. The result follows by A6. O

For the next corollary we distinguish the inclusions i; : Sh(X) > [©(X)*,Set] and i, : Et(X) > TopJX.

Corollary S11: TL {1, and i, {LT.

Proof:
Identify 1 : 1{gxgop.seyy > 11 ['L with the 1 defined above in the L 4T adjunction, and
& : ['Li; o= lgyx with 1" defined above on Sh(X), since 7 is an isomorphism there.
Thus, iis o i is identified with n™' o m on Sh(X) = i€ o Mi; = lgy,.
Note that the following square commutes VP e [@(X)*,Set] by the naturality of n:
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P Ne

>[LP
nNe [Lne
v
['LP ['LTLP

NrLp

and by the universality of np (the horizontal version), it follows that ['Lnp = nrp.

Thus VP € [©(X)™,Set], errp o TLne = 0" rrp © Mree = Lrre.

.. by A2(iii) it follows that I'L { i.

The result i, { LT follows almost identically. In this case we use the counit of the L { I adjunction

to define our unit and counit for this adjunction, and the necessary identities (from A2(iii)) follow
similarly. O

The functor I'L above is known as the associated sheaf functor.

Consider another topological space Y and a continuous function f : X — Y. Then we see that f induces a
functor f. : Sh(X) — Sh(Y) given by f-F(U) = F(f 'U). One can always construct a left exact left adjoint f
to f-. The details of this construction are not important for the next section, but the fact that f. always has
a left exact left adjoint is one vital component of the analogy that we are attempting to build up.
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GROTHENDIECK TOPOSES

Defining Grothendieck Toposes

Now we use the results of the previous chapter on topological sheaves to provide a notion of sheaf for
categories more general than ®(X).

By direct analogy with topological sheaves, we present the notions of topology and sheaf for a category.
First we require some notation. Consider the arrows U; — U and U; = U. We adopt the following notation
for the pullback diagram:

U; Jij

Pij

U; U

Let C be a small category with pullbacks. A Grothendieck pretopology for C is a setiR(U)}of families of
arrows {U; = U : i e I} for each object U of C such that:
() VU e obj(C), {1y} € R).
(i) IfUy—> Uisanarrow of C and {U; - U :i € I} € R(U), then {ak : 1 € [} € R(Uy).
(i) f{Ui>U:iel} e RW)and Vi € I, {(U); > Ui:j e J} € R(U),
then {(U)j > Ui>U:iel jeJ} € RQU).
The elements of R(U) are called covering families for the pretopology.

©(X) has an obvious Grothendieck pretopology. For each U < X open, take R(U) to be all the open
coverings of U.

A presheaf on C is a functor P : C°® — Set. Proposition S2 motivates us to provisionally define a sheaf on

C to be a presheaf F such that for each covering family {U; > U:ie I} € R(U), e is an equaliser in the
following diagram:

5 .
F(L])__9 Hie[ F(Ul) HLje[ F(Ijij)

b

where a; = Fp;j o p;, b = Fg; o p;, and ¢; = F(U; - U) and where p; and p; are product projections.

Suppose that R is some pretopology on C, ou;= {U; - U : i € I} € RU)and P is a sheaf for R. Consider
also Py = {0y : Uy = U : m € M} D oy, that is, [ = M. Now, consider the following diagram for P:
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—
P(U)_"—_'9 Mmem P(Un) 1_Im.nEM P(Unn)

N/

Then given f such thata o f=b o f, it follows that 3! g such that Vi e I, f; = ¢; o g. Consider any m € M.
Then Vi € L F(Qim) © fu = F(pin) © f = F(Pim) 0 €i 0 g = F(Qim) © €m o g

But, {qim : i € [} € RU, so that the arrows F(qin) are jointly monic.

~. fn = em o g. That is, e is an equaliser so that P satisfies the sheaf property for the covering Bu.

Now suppose that By < oy and that every arrow in oy factors through an arrow in Bu. Consider again the
above diagram for P. Given f such that a o f=b o f, we can extend f to a function Q — IT;; PU; such that
the same condition holds for the corresponding diagram with respect to the covering oy. Thus we can find
g making the above diagram commute (since we can do this in the corresponding oy diagram).

We wish to show that g is the unique such arrow. Suppose that u,v € PU such that e(u) = e(v). Then Ym
€ M, F(Un = U)(u) = F(Uy —» U)(v). Consider i € 1. Then by hypothesis, 3 m € M such that U, > U
factors through Uy, — U. That is, F(U; = U)(u) = F(U; = Uy) o F(Uy = U)(u) = F(U;, > Uy) o FUn —
U)) = FU; - U)(v).

Since this equation holds Vi € I, and that e in the oy diagram is injective, it follows that u = v.

. ¢ (in the By diagram) is injective = g is unique.

Thus P satisfies the sheaf condition with respect to .

The above paragraphs exhibit the sense in which our provisional definitions are redundant, since many
pretopologies give identical sheaves. In what follows we are able remove this redundancy and also the
assumption that C has pullbacks.

Let C be a small category. Then a sieve on the object U of C is a subfunctor of C(-,U).

Every sieve is a covering family. For any sieve aw; > C(-,U), we identify the covering family oy with the
objects of the category of elements of the presheaf ouy.

Consider a covering family oy Suppose that o is in fact a sieve. Let g : W - Vand f: V> U e o
That is, f € ou(V). Then considering the map C(g,U) : C(V,U) — C(W,U), it follows that o(g)f) =fog
so that fo g € ay(W), that is, fo g € .

Conversely, if oy has the property Vg : W — Vand Vf: V - U € ay, that fo g € ay, then it follows that
oy is a subfunctor of C(—,U).

Given a covering family oy, we can generate a sieve o'y = {f :V — U : f factors through an arrow in o}.

Observe that a covering family and the sieve it generates will satisfy the sheaf condition for exactly the
same collection of presheaves.

Some notation is required for the next definition. Let R be a presheaf and f € C(V,U). Then let f*(R) be
the pullback of R > C(-,U) along C(-,f) in [C*® Set]. Remember that [C Set] is complete so that it must
have pullbacks, and they are formed pointwise from Set. Translating the pretopology definition into the
language of sieves, we obtain the following definition.
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A Grothendieck topology on C is a set J(U) of sieves for each U € obj(C) such that:
@ CE=1) e IU).
(i) IfR € J(U) and f € C(V,U), then F*(R) e (V).
(iii) IfR € J(U) and S is a sieve on U such that ¥V e obj(C), Vf € R(V) we have £%(S) € J(V),
then S € J(U).
The elements of J(U) are called covering sieves for the topology.

A category C with a Grothendieck topology defined on it is called a site and is denoted by (C,J).

A sheaf on (C.J) is a presheaf F such that YU e obj(C), R € J(U), each R e— F has exactly one extension
to a natural transformation C(—,U) e— F. A presheaf P is a separated presheaf when it satisfies this
condition with “exactly one” replaced by “at most one”. We denote the full subcategory of [CP,Set]
consisting of all the sheaves under the topology J as Sh(C,J).

Let pr = [C?,Set](R > C(=,U),P) : [C* Set](C(-,U),P) - [C*,Set](R.P). That is, p takes C(—,U) o—> P
to its restriction on R. Another way to say that F is a sheaf is that YU e obj(C), R € J(U), py is an
isomorphism. Similarly, F is a separated presheaf when VU e obj(C), R € J(U), pr is monic.

Consider R € J(U) and F € [C*,Set]. We saw above that we can regard R as a covering family {o; : U; >
U :i e I}. Given a natural transformation ¢ : R e— F, we obtain (Puiy())ier € ier FU;. Furthermore, the
naturality of ¢ says that dug(cs o pi) = Fpi(du)(aw))-

-~ forij e I Fpy(dua(o)) = ducip(oi © Pi) = dugp(% © Qi) = dugp(ci © Py) = Fpii(dugy(oy)).

Similarly, (w)ic; € Iie; FU; with Fp;(u)) = Fp;i(w)) Vi,j € I, determines ¢ : R e— F by ¢y (o) = u;.

That is, [C,Set](R.F) = {(u)ic1 € [Li; FU; : Vijj € I, Fpij(u)) = Fpj;i(u))}.

By the definition of equaliser for sets, F satisfies the “equaliser sheaf condition” for R <> FU = {(u))ic; €
e  FU; : Vijj € 1, Fpy(u)) = Fpy(uy))}.

. F satisfies the “sieve sheaf condition” for R <> [C,Set](R,F) = [C®,Set](C(-,U),F) < F satisfies the
“equaliser sheaf condition” for R, since by the Yoneda lemma [C®,Set](C(-,U),F) = FU.

That is, the above definition of sheaf in terms of sieves is equivalent to the provisional definition made for
pretopologies.

The set A(C) of Grothendieck topologies on C is partially ordered by inclusion. That is, J < J' in A(C)
when VU e obj(C), J(U) < J'(U). Clearly, Sh(C,J")  Sh(C,J) when J < J' in XCO). In particular we have
the minimal topology in which only the representables are covering sieves, so that all presheaves are
sheaves. On the other hand, we have the maximal topology in which every sieve is a covering sieve.
Suppose that P is a sheaf for the maximal topology. Then YU e obj(C) we take the R to be the empty
sieve, which also the initial object of [C*®,Set]. Applying the sheaf condition along with the Yoneda
lemma for R, we see that PU = [C,Set](R,P) = 1. Thus, in this case the only sheaf is the terminal object
of [C,Set]. Consider {J; : i € I} < AC). Then by definition i, J; € XC). Thus, AC) admits all infima.
Since AC) has a supremum, it follows that Z(C) admits all suprema (so that it is a complete lattice). We
are thus able to make the following definition.

The canonical topology on C is the largest topology for which all the representables are sheaves. A
topology J on C is said to be subcanonical when it is smaller than the canonical topology in which case all
of the representables are in Sh(C.,J).

A Grothendieck Topos is a category £ that is equivalent to Sh(C.J) for some site (C,J). Furthermore we
define a geometric morphism between Grothendieck toposes £ and 4 to be a functor f. : £ —> 4 that has a
left exact left adjoint. We usually denote this left adjoint by f".
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A very simple example of a Grothendieck topos is Set. Specifically, let C = 1 so that J is determined
trivially . Then every presheaf is a sheaf so that [1,Set] = Sh(1) = Set. Another example is any category of
presheaves [C®,Set] since we can take J to be the minimal topology.

The Associated Sheaf Functor

We now construct a generalisation of the associated sheaf functor from topological sheaves, on the site

(C.D).

Lemma GT1: LetU € obj(C) and R, S € J(U). ThenR A S e J(U).

Proof:
Take f: V — U in R. Saying that f € R is the same as saying that C(—f) factors through the
inclusion R % C(-,U). In the diagram:

1
£(S) £%(S) C- V)
RAS L oRres R C(-D
\ \ \ y \
RAS S C-U)

the bottom right, top and bottom left, and the large right squares are pullbacks by definition and
the right and left-most triangles commute. The middle triangle commutes since S > C(-,U) is
monic, all the squares on the right commute and the right-most triangle commutes. It follows that
the top right square is a pullback (since the big and bottom right squares are pullbacks), so that
by axiom (ii) for Grothendieck topologies, f*(S) e J(V). Furthermore, the big left square is a
pullback (since the little left squares are). Thus the entire diagram is a pullback (since the big left
and right squares are). Thus, f*(R n S) = f*(S) e J(V). Since this is true YV € obj(C) and f €
R(V), it follows by axiom (iii) for Grothendieck topologies that R ~ S e J(U). O

We observe that J(U) can be regarded as a filtered category. Specifically, the objects are sieves, the arrows
are reverse inclusions, and the above lemma indicates filteredness. Notice also that J(U) regarded in this
way has an initial object C(-,U).

For U € obj(C), define LP(U) = colimgyw, [C®,Set](R,P). Since colim is functorial this defines a
presheaf. Let (tp)r : [C™,Set](R,P) = LP(U) denote the components of the universal cocone. Also, define
yr : PU — [C* Set](C(-,U),P) to be the isomorphism given by the Yoneda lemma. Then we can define the
arrows (np)u = (tp)c © y : PU — LPU. Clearly the ny are natural in U, so that np : P e— LP.

Lemma GT2: Let P be a presheaf.
(i) P isseparated <> mp is monic.
(it) P is a sheaf < mp is an isomorphism.

Proof:
Fixing U € obj(C), P is separated (a sheaf) < VR e J(U), py is a monic (isomorphism).
Since y is an isomorphism, np is a monic (isomorphism) < 7y, is a2 monic (isomorphism).
Since J(U) is a directed set, we can apply L10(ii) to <.
~ VRS € J(U), f:Re—>Pandg: S e— P where tz(f) = t5(g), 3 T > RS such that fl; = gr.
[n particular, ¢ v)(f) = tcu(g) = 3 T e J(U) such that pr(f) = pr(g).
Since VR € J(U), Tey) = Tr © pr, Tcr1) injective = pg is injective VR.

33



Conversely, suppose pr is injective VR & J(U). Then tc i)(f) = tcu(g) = 3 T e J(U) where
pr(f) = pr(g) = f=g, so that Ty, is injective.

Suppose that VR e J(U), p is surjective. Then f o tc )= g o Ty = VR € JU), fo g 0 pr =
gowopr = VReJU), forg=gotg = f=g since 1z are jointly surjective.

- VR € JU), prepi = Tty epi.

Finally, suppose that .. is an isomorphism. For R € J(U), we construct a cocone
componentwise as s : [C* Set](S,P) - [C,Set](R.P) as ws = pr o Ty o Ts.

Then, VS € J(U), tg o s =15 = W is a limiting cocone since T is.

.. Tg is an isomorphism = pg is an isomorphism. O

Lemma GT3: IfF is a sheaf and P is a presheaf, then any ¢ : P e— F factors uniquely through n.

Proof:

We seek a unique arrow \p : LP e— FU such that \y o np = ¢. The following diagram makes this
construction obvious:

PU — 25 (€% Set|(C(-,U)P) — DD 5 1py

du ¢o— Loy

FU ———— [C*,Set](C(-,U),F) ——— > LFU
g (tR)c-v
The left square commutes by the naturality of the Yoneda isomorphism. The right square
commutes since colim is functorial. Thus, the large square, whose horizontal arrows are (1p)y
and (ng)u, is commutative. Note that yp and yr are isomorphisms (by definition), and that
(Tr)c-v) is an isomorphism since F is a sheaf. Thus we take y = g~ o Lo. O

Lemma GT4: For any presheaf P, LP is a separated presheaf.

Proof:

Take o, B € LPU. These correspond to o, * : C(-,U) e— LP by the Yoneda lemma. Suppose
that 3 Q e J(U) such that aq = Bq (ie po(a™) = po(B™)). By L9 the elements of LPU are
equivalence classes of natural transformations R e— P for R € J(U). Thus we can also represent
o and B as natural transformations o.” : R e—> P, BV : S e— P for some R, S € JQU).

That is, (tp)r(e") = o and similarly for p.

Leth:V — U e QV. Then a(h) = B~(h) so that LP(h)(c) = LP(h)(B).

Then by axioms (ii) and (iii) for Grothendieck topologies it follows that 3 T = RAS such that
o'l = BV|r so that indeed o = (zp)r(ex") = (p)(B") = .

- VQ € J(U), pq is monic = LP is separated. o

Lemma GTS5: For any separated presheaf P, LP is a sheaf.

Proof:

Consider ¢ : R e— LP where R € J(U). We need to extend this to C(—,U) e—> LP. Given such an
extension, uniqueness follows by GT4. Let f: V — U e R, then ¢v(f) € LPV and so corresponds
to an equivalence class of natural transformations S e— P for S € J(V). Thus, we can represent
dv(f) by o¢: S¢e— P where S¢ € J(V). Construct a sieve Q= {fog:fe Rand g € S} thought of
here as a covering family. Then by Grothendieck topology axiom (iii) Q € J(U). We construct the
natural transformation  : Q e— P as y(fo g) =o(g), forf: V—>Uandg: W - V.
First we claim that \ is well-defined:
Taking f: V- U e Rand any h : W — V, the naturality of ¢ gives pw(fo h) =
LP(h)(¢v(). Thus oy, is equivalent to o¢ (under the colimit equivalence relation).
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. 3 Tgw € J(W) such that Vg e Ty, oen(g) = oh o g).

Suppose that fo g = f o g'. Taking k € T = T¢z N Tey we see that:

P(k)(cd(g)) = o8 ° k) = oe(k) = Teg(k) = oe(g' o k) = P(k)(oe(g).

That is, o(g)lr = oe(g")|r when we regard o(g) and o¢(g') as C(-,W) e— P by the

Yoneda lemma. That is, o(g) = o¢(g') as elements of LPW.

Furthermore, since ¢ and o are natural, it follows that \y is natural.
Since \p : Q e— P it represents an element of LPU (under the colimit equivalence relation,
namely to(\y) € LPU). Thus  corresponds to a natural transformation C(—,U) e— LP by the
Yoneda lemma. It follows by the definition of \y that \y : C(—,U) e— LP is an extension of ¢, that
is, that w|g = ¢. O

Proposition GT6: L’ is a left exact left adjoint to the inclusion i : Sh(C,J) > [C*,Set].

Proof:
Firstly, L* : [C®,Set] — Sh(C.J) by GT4 and GT5. Then by two applications of GT3 it follows
that np o Mp : P — L*P is universal from P to L? for each presheaf P. Thus L* {i by A2(i).
Now, consider a functor T : I - [C* Set] where I is finite, and denote T(i) by P; and write lim(T)
as limy(P;). Also, let U € obj(C).

Then, limLP)(U) = limLP;U)) since limits in [C?,Set] are formed pointwise.
= limi(colimRE;(U) [C°p,Set](R,Pi))
= colimgejuy lim;([C*,Set](R,P))) since J(U) is filtered and using L18
= colimgejuy [C*,Set](R,lim;(P;)) since [C,Set](R,-) preserves lims.
= L(lim;(P))(U).

That is, limy(LP;) = L(lim;(P;)). That is, L preserves finite limits.

. L¥is a left exact left adjoint to i. 0

Thus we see that i : Sh(C,J) > [C*,Set] is our first example of a geometric morphism. Since i is full and
faithful, it follows by A4 that L% o i = lgyc.,.

We conclude this section with an important proposition regarding Grothendieck toposes.

Proposition GT7: Any Grothendieck topos £ is complete and cocomplete.

Proof:
It is easy to see that Sh(C,J) is complete for any site (C,J). Let lim;(P;) be some limit of sheaves.
Then since [C,Set] is complete lim;(P;) is well-defined as a presheaf. However, the sheaf
condition for each covering sieve can be expressed in terms of an equaliser diagram. Since the
limit of limits is a limit (see remarks beneath L17) it follows that lim;(P;) must satisfy the
equaliser sheaf condition since the individual P; do.
Thus, £ is equivalent to a complete category and so must be complete.
For some site (D,K), £~ Sh(D,K). By GT®6, it follows that there is a full and faithful geometric
morphism I. : £ — [D®,Set]. Since [D®,Set] is cocomplete, the result follows by L17. [

Cover Preserving Functors

We are interested in geometric morphisms f. : £ — [C, Set] and their relationship to f=f o Y where Y
denotes the Yoneda imbedding C — [C*,Set]. We say that f: C — £ is cover preserving when it takes
covering families in C to jointly epimorphic families of arrows in £. Realise that since £ is not necessarily
small, we cannot define a topology on it using the above definitions directly, so perhaps the term cover
preserving is a bit misleading. However, it is possible to define Grothendieck topologies on large
categories, but we will not go into this.
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The main result here is that f is cover preserving iff f- factors through i : Sh(C,J) > [C®,Set]. Before
proving this result we require a number of preliminary results.

Lemma GTS8: Every injective function is an equaliser.

Proof:
Let m : A — X be injective. Then f is the equaliser of the functions u, v : X — 2 where these are
defined as: u(x) = 1 iff x € im(m) and v(x) = 1 ¥x € X. O

Lemma GT9: If m: A — X is an equaliser in some category D then it is the equaliser of u, v where the
following is a pushout:

assuming that this pushout exists in D.
Proof:
Assume that m is the equaliser of r and s:

B et T 7z

H Q

Since m, u, and v form a pushout square and rom =som, 3! wwhere wou=rand wov =s.
Suppose uo f=vo f. Thenrof=so fso that f factors uniquely through m. O

In the above situation we call (u,v) the kernel pair of m. A direct corollary of GT8, GT9 and L14 is that
for any category D, every monic in [D,Set] is the equaliser of its kernel pair.

Lemma GT10: In any category D and e € arr(D), ¢ is an equaliser and e is epi = e is invertible.

Proof:
Suppose € : A — X is the equaliser of u,v : X = Y. Since e is epi and u o ¢ = v o ¢, it follows that
u=v = uoly=vo ly Thus it follows that 3! m : X = A such thate o m = 1.
S €omog=¢ = moe= |, since e is monic since ¢ is an equaliser. O

Lemma GT11: Every monic in £ is an equaliser.

Proof:
Let m : E — E' be a monic in £ and recall the full and faithful geometric morphism I- : £ —
[D?,Set] for some site (D,K). Then [-m is also monic since I- preserves limits. Since Im is an
arrow in [D,Set] it follows that it is an equaliser of its kernel pair, and since I is left exact, it
takes this equaliser to an equaliser I'l-m in £. But I- is full and faithful so that ['l- = 1, from
which it follows that m is an equaliser. u
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Lemma GT12: Every jointly epic family (o : U; > U : i € I) in € has

(py) @)
iz Uj 3 U —— >
(qi)

as a coequaliser.

Proof:
When £ = Set we note that ai(x) = aj(y) < (X,y) € Uj, so that the result follows in this case.
By the pointwise formation of colimits for [D°° Set] from Set, the result follows for £= [D°,Set]
for some category D.
For the general case we recall the full and faithful geometric morphism I-. Let

(I‘pi') (‘cl)
HLjeI I ij S Hie[ I"[-Ii P
(I-qy)

be a coequaliser. Then 3! m : P — I.U such that m o ; = L.o; and this m is necessarily monic
since I. preserves limits. Then applying I to this situation and noting that I'l. = 1, it follows that
Lm : LP — U is monic and hence an equaliser by GT11, and epi since o is a jointly epic family.
.. by GT10 Lm is invertible, so that o; form a limiting cocone. O

Proposition GT13: Consider the geometric morphism f. : £ - [C® Set] and f=f o Y : C - £ where Y
denotes the Yoneda imbedding C — [C*,Set]. Then f is cover preserving iff f- factors through the
inclusion i : Sh(C,J) > [C°P,Set].
Proof:

Suppose that f is cover preserving. Let (o; : U; = U : i € I) € J(U). Then

(foy)
oS
(fay)

is a coequaliser by GT12 since by hypothesis, the f(o;) form a jointly epi family. The
representable £(—,E) takes colimits to limits, and applying this to the above diagram gives the
sheaf condition for £(f- E). Since f=f o Y it follows that f = Lany(f) = colim(—,f) (see lines 3-7
of the proof of CK17, which apply here because £ is cocmplete by GT7) so that by the proof of
L20 f-(E) = &f-,E). That is, f-(E) is a sheaf.

For the converse, reverse each of the steps in the above argument. O

fo.
[ijer U ie: £U; ey
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THE DUALITY BETWEEN GEOMETRY AND LOGIC

The Main Theorem

At last we are in a position to discuss the main theorem alluded to in the introduction. Again we adopt the
notation £ to denote a Grothendieck topos and (C.J) to denote a site. First we require a lemma.

Lemma GT14: Letf:C — £and g: C — D be functors where C is finite complete and D is some other

category. Suppose also that f is left exact. Then Lan,f is left exact.

Proof:
In any case since £ is cocomplete, Lan,f exists by CK9 and is pointwise.
Suppose that £ = Set. Then since f is left exact and C is finite complete it follows that el(f) is
finite complete = el(f)*” is finite cocomplete = el(f)*" is filtered.
In this case we see that Lany(f)(E) = colim(Set(g-.E),f) = colim(f,Set(g— E)) by L7 and by the
dual of L6, colim(f,Set(g—,E)) = colim(el(f)*® — C — D) which is a filtered colimit. Thus by L18
it follows that Lany(f) is left exact.
Next suppose that £ = [B" Set] for some category B. Then since Lan,f is expressable as a
[B,Set]-valued colimit, it follows that Lan,f is itself formed pointwise from Set. By the
pointwise formation of limits (again) it follows from the case £ = Set that Lan,f must be left
exact.
Finally we take £ in general. Then there is some site (B,K) and a full and faithful geometric
morphism I. : £ — [B®,Set]. Now since I- o fis left exact and by the previous case it follows that
Lany(I- o f) is left exact. But since I is a left adjoint it preserves left Kan extensions, and because
I"o I = 1, it follows that Lany(I o I o f) = Lany(f) = I o Lan(I- o f), and since I is left exact this
left Kan extension must be left exact also. O

Let LexCovPres(C,£) be the full subcategory of [C,£] consisting of all of the left exact cover preserving
functors. Similarly, Lex(C,£) consists of all of the left exact functors. Let Geom(&,Sh(C,J)) be the full
subcategory of [£,Sh(C,J)] consisting of all of the geometric morphisms. Then we obtain the following
result:

Theorem GT15: For (CJ) a finite complete site, LexCovPres(C,£) ~ Geom(&,Sh(C,J)).

Proof:
Since £ is cocomplete it follows by CK17 that [C,£] ~ CoCts[[C*,Set],£] and that this
equivalence is given by taking left Kan extensions along Y : C — [C® Set]. Under these
circumstances it follows also that each Lany(f) = f : [C*®®,Set] — £ has a right adjoint which we
will denote by f-. Hence this equivalence of categories restricts by GT14 to an equivalence
Lex(C,&) = Geom(£,[C* Set]), and this restricts yet further by GT13 to the desired result. O

An [llustrative Example

In order to provide some insight into the meaning of this last result we present an illustrative example.
Here we study the theory of local rings, which is typically viewed from a logical perspective. However we
will use the above result to demonstrate the way in which the theory of local rings can be viewed within
something analogous to a spatial perspective.

We will focus our attention on the category of finitely presented commutative rings with identity and

denote this category by FPCR. Such a ring R is a local ring when Vr € R, ris a unit or (1-r) is a unit.
This is very much the logical perspective.
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By definition every A e FPCR, is expressable as a quotient Z[x,, ..., X,] / L. This is just a coequaliser
diagram involving rings of polynomials over Z and A as the coequaliser. Furthermore, the Z[x,, ..., Xa]
themselves are just coproducts Z[x;] ® ... ® Z[x,]. Thus every A € FPCR is expressable as a finite

colimit of Z[x]’s. Furthermore, since all finite colimits are obtainable precisely from finite coproducts and
coequalisers, it follows that FPCR is in fact finitely cocomplete.

Consider a left exact functor M : FPCR®® — Set. Now, in the previous paragraph we demonstrated that
FPCR is finitely complete and that every element of this category is obtainable as some finite limit of

Z|[x]’s. Thus, since M preserves all finite limits, it is determined by its value on Z[x].

Usually the axioms for a commutative ring with identity are defined by the use of logical notation within
the framework of set theory. However it is possible to define these axioms by the use of commutative
diagrams. For example the associative axiom for the ring R within the category Set could be expressed as:

oxly
RxRxR RxR
Irxe °
RxR R

where o : RxR — R denotes the multplication map. Specifically for a ring object in Set we need a set R
and the following collection of maps:

1 R RxR
0 °

(where the object 1 is the ring {0,1}, the arrow 1 takes 1 = 1 € R and the arrow 0 takes 1 — 0 € R)
along with a series of commutative diagrams that give the axioms for a commutative ring in the way
demonstrated above. Notice of course that this definition of ring object is in fact good for any category C
with finite products. A coring object for a category C with finite coproducts is defined in the same way as
a ring object except that all of the arrows are reversed and RxR is replaced by RLIR (ie R®R).

It is not difficult to check that Z[x] is coring object. Our collection of coring maps is:

1 Xty

z Z[x] Z[xy]
0 Xy

where the labels on the arrows indicate where x € Z[x] gets sent. Thus Z[x] is a ring object in FPCR and
since M takes commuting diagrams to commuting diagrams it follows that R = M(Z[x]) is a ring object in

Set. So we can in fact define a ring object in Set as a left exact functor M : FPCR®® — Set, the advantage
being that this definition is good for any Grothendieck topos £.

It is not possible to set up the axioms of a local ring S just using commutative diagrams as we did above
because we need to say something about arbitrary elements in S. This is where covering families and
Grothendieck topologies become useful.

The following coequalisers:
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oy

Z[x] Zixy| 7 ZIxyl(xy-1)

1

(1-x)y .

1

Z[x] Zxyl— 7 Z[xyW(1-xy-D)

give a pair of maps out of Z[x] in FPCR and thus a pair of maps into Z[x] in FPCR®. We take the sieve
generated by this covering family and impose the minimal topology J on FPCR that contains this sieve
as a covering sieve.

We can now insist that M be cover-preserving. Firstly since M preserves limits, applying M to the above
equaliser diagrams for FPCR® we obtain equaliser diagrams. From this it follows that under these
diagrams M(Z[x,y]/(xy—1)) is identified with the subset {(r,s) € RxR : rs = 1} < RxR which in turn is
identified with the subset {r € R : r is a unit} < R. Similarly the element Z[x,y]/((1-x)y—1) — Z[x] of the
covering family for Z[x] in FPCR® given above is sent to the inclusion {r € R : (1-r) is a unit} c R. Thus
the condition that M is cover-preserving is precisely that these inclusions are jointly epi, that is, as subsets
they cover all of R. Hence R is a local ring object in Set. Thus we can define a local ring object in Set as a
cover preserving functor M : FPCR® — Set, and we can define the theory of local rings in Set as the
collection of all of these, that is, LexCovPres(FPCR,Set). Of course, this notion of a theory of local rings
is good for any Grothendieck topos £.

Now we can exploit our theorem to give an alternative perspective of the theory of local rings. Specifically
we have the equivalence LexCovPres(FPCR Set) ~ Geom(Set,Sh(FPCR,))).

We can use analogy with topological spaces to provide another interpretation for f. : Set — Sh(C,J) a
geometric morphism where (C,J) is a site. Firstly, Set = Sh(1) where 1 is the one point topological space.
In topology a geometric morphism f. : Sh(1) —» Sh(X) is induced from a continuous function f: 1 — X.
But, such a continuous function is nothing more than a point of the topological space X.

Therefore we can interpret the theory of local rings in Set as being analogous a topological space whose
points are local rings. This provides a spatial alternative to the logical theory of local rings. Notice how
effective the category theory was in objectifying the usually vague notion of “theory”, so that this spatial
analogy could be given in precise mathematical language.
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