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As an abstract concept, Mackey functors appeared in 1971 with applications to the
representation theory of finite groups [see J. A. Green, J. Pure Appl. Algebra 1 (1971),
no. 1, 41–77; MR0279208; A. W. M. Dress, Notes on the theory of representations of
finite groups. Part I, Universität Bielefeld, Fakultät für Mathematik, Bielefeld, 1971;
MR0360771]. For these authors a Mackey functor M with domain category C was a
pair of functorsM∗,M∗ equal on objects, whereM∗ (called induction on morphisms)
had domain C, and M∗ (called restriction on morphisms) had domain Cop, satisfying
some axioms abstracting representation theory. Given a finite group G, for Green, C was
equivalent to the category of connected finite G-sets while for Dress, C was the category
[Gop, set] of finite G-sets. Dress’s requirement that M∗ should preserve finite products
meant the concepts were equivalent.

Categorical insight was provided by H. Lindner [Manuscripta Math. 18 (1976), no. 3,
273–278; MR0401864], who showed that Mackey functors with domain C were equivalent
to single finite-product-preserving functors with domain the category of spans in C.
Spans are a significant device in the book under review and the Lindner result is an
instance of the authors’ motivic approach, as clarified in Chapter 6.

On page 3 we learn briefly that the purpose of the book is four-fold: to lay the
foundations of Mackey 2-functor theory, to catalogue justifying examples, to provide
some applications, and to construct a motivic approach. On this last point, at the
bottom of page 4 the authors give a correspondence between the steps in Grothendieck
motive theory and what they will do with 2-motives. Algebraic varieties are replaced
by finite groups, Weil cohomologies by Mackey 2-functors. The initiality of the category
of pure motives becomes the initiality of the 2-category of Mackey 2-motives. Just as
decomposition of a variety X into a direct sum of simpler motives means the Weil
cohomology at X also decomposes, a decomposition of the 2-motive of a finite group G
means every Mackey 2-functor at G decomposes.

The heroes of the book are finite groupoids: categories with a finite number of
morphisms, all invertible. Finite groups are identified with one-object finite groupoids.
In order to see Mackey functors as related to lower-dimensional Mackey 2-functors, as
explained by Theorem B.0.12 in Appendix B at the end of the book, we must realise
that a G-set X can be identified with the discrete fibration over G obtained as the
category of elements of the functor X:Gop→ Set. The point needed is that each faithful
functor E→G from a groupoid E to the group G is equivalent over G to such a discrete
fibration.

Now to the definition of Mackey 2-functor. The 2-category of finite groupoids, func-
tors, and natural transformations is denoted by gpd. The 2-category of abelian-group-
enriched categories admitting finite coproducts, additive functors, and natural transfor-
mations, is denoted by ADD. For any 1-morphism u in gpd, the authors write u∗ for
Mu. While a Mackey 2-functor is a (strict) 2-functorM: gpdop→ADD, for the axioms,
it is better to think of it as a pseudofunctor between bicategories. Finite bicategorical
products are to be preserved by M. For each faithful functor i:H → G between finite
groupoids, there are adjunctions i∗ a i∗ a i∗. The two Beck-Chevalley conditions should
be satisfied at each square displaying a (bicategorical) comma category in gpd of the
form i/u with i faithful (they call these Mackey squares): the square commutes up to a
natural transformation γ : i ◦ v⇒ u ◦ j (invertible since we are dealing with groupoids)
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and the conditions say that the mate γl: j∗ ◦ v∗⇒ u∗ ◦ i∗ of γ (using adjunctions i∗ a i∗
and j∗ a j∗) and the mate γ−1r :u∗ ◦ i∗ ⇒ j∗ ◦ v∗ of γ−1 (using adjunctions i∗ a i∗ and
j∗ a j∗) should both be invertible.

There is a Mackey 2-Functor Rectification Theorem 3.4.3. It tells us inter alia that
the units and counits of the two adjunctions i∗ a i∗ a i∗ can be re-chosen whereby γ−1r

becomes the inverse of γl. The proof involves some rather tricky analysis of the Mackey
square for i/i and the diagonal functor d:H → i/i. To indicate the kind of information
in that square let me point out that, if i is also full then d is an equivalence and we
have a Mackey square with d and γ identities, in which case, γl is the unit for i∗ a i∗.
For any faithful i:H →G the authors prove that their choice of adjunctions is such that
the counit for i∗ a i∗ is left inverse to the unit for i∗ a i∗. Consequently, the functor
i∗:MH →MG is separably monadic providedM takes values in additive categories in
which idempotents split.

Before moving to Chapter 4 on Examples, I should admit that the authors do define
Mackey 2-functors where gpd is replaced by a more general groupoid-enriched category
G and faithful functors by some class J of morphisms of G. At first G is a locally full
sub-2-category of gpd (closed under what you would expect) but for later purposes it is
even more general.

All additive derivators [see M. Groth, Algebr. Geom. Topol. 13 (2013), no. 1, 313–
374; MR3031644] give examples. Derivators are 2-functors D: Catop→ ADD satisfying
various conditions. The restriction of an additive D to gpdop is a Mackey 2-functor
(Theorem 4.1.1). The main work in showing this is to prove that the left and right
adjoints of i∗ = Di are isomorphic for i a faithful functor between finite groupoids.
Some examples of additive derivators are explained: model categories with additive
homotopy category, linear representations, derived categories, and spectra; but there
are others. The other sections in Chapter 4 discuss quotients of Mackey 2-functors by
Mackey sub-2-functors, extending group examples to groupoids, and Mackey 2-functors
of equivariant objects.

Chapter 5 is the longest (50 pages) and deals with bicategories of spans in groupoid-
enriched categories. String diagrams as well as pasting diagrams are employed to discuss
the desired universal properties of span constructions.

The bicategory Ŝpan(= Ŝpan(G; J)) of Mackey 2-motives is defined in Chapter 6.

For the purposes of this review, let me denote by Ŝ the tricategory defined as follows:

objects are those of G; morphisms G
(u,P,i)−→ H are spans G

u← P
i→ H in G with i ∈ J;

2-morphisms (u, P, i)
(w,R,k,α,β)

=⇒ (v,Q, j) are spans P
w← R

k→ Q with uw
α⇒ vk and

iw
β⇒ jk in G; and 3-morphisms (w,R, k, α, β)

(ξ,f,ζ)−→ (w′, R′, k′, α′, β′) consist of R
f→R′

and w
ξ⇒ w′f and ζ: k

ζ⇒ k′f in G such that vζ · α = α′f · uξ and jζ · β = β′f · iξ.
Then Ŝpan is the bicategory obtained from Ŝ by taking isomorphism classes of 2-

morphisms. There is an identity-on-objects pseudofunctor (−)∗:Gop → Ŝpan taking

H
g→G to G

g←H
1H→H. For (H

i→ G) ∈ J, we also have the morphism i∗ = (1H , H, i)

in Ŝpan. The great thing is that i∗ a i∗ a i∗ and, for the 2-morphism γ in a Mackey
square, γ−1r is indeed the inverse of γl. Theorem 6.1.13 tells us that the pseudofunctor

(−)∗:Gop→ Ŝpan has the universal property with respect to these properties. (A rare
typographical error: there is an important widehat missing in the first line of page 138.)
As a consequence (Theorem 6.3.6), the bicategory of Mackey 2-functors is biequivalent

to the bicategory of finite-product-preserving pseudofunctors Ŝpan→ADD.
Chapter 7 is directed at the decomposition results for the original G = gpd case. For

these decompositions to involve direct sums, certain additive structures need to be freely
adjoined to previous constructions. The enabling result is Theorem 7.4.5, which iden-
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tifies the linearised monoid Ŝpan(G,G)(1G, 1G) as isomorphic to the crossed Burnside
ring Bc(G) of the finite group G. If Gc denotes the G-set G with conjugation action then
Bc(G) is the Grothendieck ring of the slice category [G, set]/Gc. Now [G, set]/Gc is the
monoidal centre of the cartesian monoidal category [G, set] [for example, see B. J. Day,
E. Panchadcharam and R. H. Street, in Hopf algebras and generalizations, 1–17, Con-
temp. Math., 441, Amer. Math. Soc., Providence, RI, 2007; MR2381533]. The monoidal
centre of a monoidal category V is obtained by regarding V as a one-object bicategory
and forming Bicat(V,V)(1V , 1V) where Bicat is the tricategory of bicategories, pseud-
ofunctors and pseudonatural transformations. This makes me wonder whether there is
something more to be made of the fact that the two sides of the isomorphism of Theorem
7.4.5 come from instances of a construction which yields a braided monoidal category
X (X,X)(1X , 1X) from any chosen object X of a tricategory X ; the tricategories in

mind are Bicat and Ŝ.
Using the identification in Theorem 7.4.5, the authors obtain Corollary 7.5.4: for any

finite group G and any Mackey functor M taking values in Cauchy complete additive
categories, each finite-product decomposition of Bc(G) into a product of rings gives a
related finite direct sum decomposition of the additive categoryM(G).

Appendix A provides background category and bicategory material while, as men-
tioned, Appendix B is about ordinary Mackey functors. R. H. Street


