

The 3-cocycle condition

Ross Street

3 October 2001

This is a slightly extended version of my handwritten note [S]. The purpose is to show that the 3-cocycle condition in the cohomology of groups comes straight from the pasting geometry of higher-order category theory: the fact that a particular cube can be assembled at all, with appropriate source and target compatibility, leads to the equation automatically (or should I say, chaotically).

The *chaotic category* X_c on a set X has the elements of X as objects and $X_c(x, y) = 1$ for all $x, y \in X$. This gives a functor $(-)_c : \mathbf{Set} \rightarrow \mathbf{Cat}$ with a left adjoint. Hence (by the general theory of monoidal functors [EK], or otherwise) we obtain a functor $(-)_c : \mathbf{Cat} \rightarrow \mathbf{2-Cat}$ with a left adjoint; for a category C , the 2-category C_c has underlying category C and $C_c(d, e) = C(d, e)_c$. Since $(-)_c : \mathbf{Cat} \rightarrow \mathbf{2-Cat}$ has a left adjoint, it preserves products and so takes groups in \mathbf{Cat} into groups in $\mathbf{2-Cat}$.

Recall that groups in \mathbf{Cat} all arise from *crossed modules* (see [BS] for the history). Suppose $\partial : N \rightarrow E$ is a group homomorphism (in \mathbf{Set}) and $\bullet : E \times N \rightarrow N$ is an action satisfying the crossed module properties

$$\partial(e \bullet n) = e \partial(n) e^{-1}, \quad \partial(n) \bullet m = n m n^{-1}.$$

The corresponding group C in \mathbf{Cat} is described as follows:

objects of C are elements e of E ;

morphisms $n : e \rightarrow e'$ have $n \in N$ with $e = \partial(n) e'$;

composition is multiplication in N ;

multiplication $\otimes : C \times C \rightarrow C$ is defined by

$$(d \xrightarrow{m} d', e \xrightarrow{n} e') \mapsto (de \xrightarrow{m(d' \bullet n)} d'e').$$

Notice that two morphisms $n, q : e \rightarrow e'$ in C must have $\partial(n) e' = e = \partial(q) e'$ so that $\partial(n) = \partial(q)$. This means that we can regard 2-cells in the monoidal 2-category C_c as diagrams

$$\begin{array}{ccc} & \xrightarrow{n} & \\ e & \downarrow a & e' \\ & \xrightarrow{q} & \end{array}$$

where $n = a q$ with a in *the kernel A of* $\partial : N \rightarrow E$. Notice that $a n = n a$ for $a \in A$ and $n \in N$ (since $a n a^{-1} = \partial(a) \bullet n = 1 \bullet n = n$). Vertical and horizontal composition in C_c are given by multiplication in A .

Let G denote *the cokernel of* $\partial : N \rightarrow E$ so that there is an exact sequence

$$1 \longrightarrow A \longrightarrow N \xrightarrow{\partial} E \xrightarrow{\pi} G \longrightarrow 1$$

of groups (in \mathbf{Set}). Since π is surjective, we can choose $\sigma(x) \in E$ with $\pi(\sigma(x)) = x$ for all

$x \in G$. Since $\sigma(x)\sigma(y)$ and $\sigma(x y)$ are in the same fibre of π , we can choose $\tau(x,y) \in N$ with $\sigma(x y) = \partial(\tau(x,y)) \sigma(x)\sigma(y)$.

This gives morphisms

$$\tau(x,y) : \sigma(x y) \longrightarrow \sigma(x)\sigma(y)$$

in C for all $x, y \in G$.

For all $x, y, z \in G$, we can define $\lambda(x,y,z) \in A$ to be the unique 2-cell in C_c fitting in the square below.

$$\begin{array}{ccc} \sigma(x y z) & \xrightarrow{\tau(x y, z)} & \sigma(x y) \sigma(z) \\ \tau(x, y z) \downarrow & \downarrow \lambda(x, y, z) & \downarrow \tau(x, y) \otimes \sigma(z) \\ \sigma(x) \sigma(y z) & \xrightarrow{\sigma(x) \otimes \tau(y, z)} & \sigma(x) \sigma(y) \sigma(z) \end{array}$$

Consequently, by mere source and target requirements (because of local chaos), there is a commutative cube

$$\begin{array}{ccccc} & \sigma(u x y) \sigma(z) & \xrightarrow{\tau(ux,y) \otimes \sigma(z)} & \sigma(u x) \sigma(y) \sigma(z) & \\ \tau(uxy,z) \nearrow & \downarrow \lambda(ux,y,z) & \nearrow \sigma(ux) \otimes \tau(y,z) & & \searrow \tau(u,x) \otimes (\sigma(y) \sigma(z)) \\ \sigma(u x y z) & \xrightarrow{\tau(ux,yz)} & \sigma(u x) \sigma(y z) & & \sigma(u) \sigma(x) \sigma(y) \sigma(z) \\ \tau(u,xyz) \searrow & \downarrow \lambda(u,x,yz) & \searrow \tau(u,x) \otimes \sigma(yz) & & \nearrow (\sigma(u) \sigma(x)) \otimes \tau(y,z) \\ & \sigma(u) \sigma(x y z) & \xrightarrow{\sigma(u) \otimes \tau(x,yz)} & \sigma(u) \sigma(x) \sigma(y z) & \\ & & & & \\ & & \parallel & & \\ & & & & \\ & \sigma(u x y) \sigma(z) & \xrightarrow{\tau(ux,y) \otimes \sigma(z)} & \sigma(u x) \sigma(y) \sigma(z) & \\ \tau(uxy,z) \nearrow & \tau(u,xy) \otimes \sigma(z) \searrow & \downarrow \lambda(u,x,y) \otimes \sigma(z) & \searrow \tau(u,x) \otimes (\sigma(y) \sigma(z)) & \\ \sigma(u x y z) & \downarrow \lambda(u,xy,z) & \sigma(u) \sigma(x y) \sigma(z) & \xrightarrow{(\sigma(u) \otimes \tau(x,y)) \otimes \sigma(z)} & \sigma(u) \sigma(x) \sigma(y) \sigma(z) \\ \tau(u,xyz) \searrow & \sigma(u) \otimes \tau(xy,z) \nearrow & \downarrow \sigma(u) \otimes \lambda(x,y,z) & \nearrow (\sigma(u) \sigma(x)) \otimes \tau(y,z) & \\ & \sigma(u) \sigma(x y z) & \xrightarrow{\sigma(u) \otimes \tau(x,yz)} & \sigma(u) \sigma(x) \sigma(y z) & \end{array}$$

This gives the usual equation

$$\lambda(u, x, yz) \lambda(ux, y, z) = (u \bullet \lambda(x, y, z)) \lambda(u, xy, z) \lambda(u, x, y)$$

for a 3-cocycle $\lambda : G^3 \longrightarrow A$ on G with coefficients in A .

References

- [BS] R. Brown and C.B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, *Proc. Kon. Nederl. Akad. Wetensch. Ser. A* **76** (1976) 296-302.
- [EK] S. Eilenberg and G.M. Kelly, Closed categories, *Proceedings of the Conference on Categorical Algebra at La Jolla* (Springer, 1966) 421-562.
- [S] R.H. Street, The 3-cocycle condition (handwritten manuscript, August 1986).

Centre of Australian Category Theory
Macquarie University
New South Wales 2109
AUSTRALIA
email: street@math.mq.edu.au