ounctorial Complex Analysis

Let A denote the category whose objects are finite dimensional unital associative algebras
over the complex number field C and whose arrows are algebra homomorphisms. Let

U:4—8
be the forgetful functor into the category S of sets. Anatural transformation

0:U—U
is said to be continuous when, for all A€4, the component 6, : UA— UA is continuous for the
canonical topology on the set UA  transported across any linear isomorphism A = CdmA

Schanuel Theorem [Sch] There is a bijection between continuous natural transformations
0:U—U

and analytic functions f: C —C under which 0 corresponds to f=0..

Proof One question which must be addressed is why, for continuous natural 0: U — U, is f=0,
analytic. The two projections p; : C x C —>C are algebra homomorphisms, so the following
squares commute for i=1,2; so 6, =f x £:C xC—C xC.

erC
Cx C—>Cx C

A

C —T—> C
C
Consider the algebra W of upper-triangular 2 x 2 matrices

A O

o
with complex entries. For each complex number o, we have an algebra homomorphism h_: C x
C — W given by

0

hy (h, ) = [" “(’“‘”)]

Naturality implies that the following square commutes for all a.
' 0

CxC
Cx C e Cx C

T

W—— > W
w
It follows that, for all «, A, p €C, we have the equality
bry [7& a(h- M)] _ {f(l) a(f(rh)- f(M))]
| 0 p 0 f(w)
Take Asp and a=1/(A~p). This gives the following identity.




A1 £(0)-£(1)
Oy _ [fN) ==
0w 0 f(w
Using the continuity of 8, we see that the left side of the above identity has limit

0 Al
"o
as u tendsto A. It follows that the right side also has a limit as p tendsto A; by inspection of the
top right entry of the matrix, we deduce that f is differentiable. Indeed we have the formula
A1 f(n) ')
Ow -
0 A 0 f(?\.)] .

It is well known that any differentiable function of a complex variable is analytic. So f is analytic.
Now suppose f: C— C is any analytic function. Then there is a Taylor series

f(z) = i Cp 2"
n=0

which allows us to define 6, : UA—— UA for any algebra A€4 by

o
n

0, (a) = 2 cpa.
n=0

Clearly this defines a continuous natural transformation 6 : U—U with 8. =f. This shows that

the assignment of the theorem is surjective.
It remains to show the assignment is injective. Suppose 6, ¢ : U— U are continuous and

natural with 8- =f = ¢ . Every algebra A is isomorphic to a subalgebra of a matrix algebra
M,(C), so, by naturality, it suffices to show that 0, ¢ have equal components at each algebra
ML(C). Every matrix is a limit of a sequence of matrices with distinct eigenvalues. By continuity of
0, ¢ itsufficesto show their components at M (C) equal on matrices with distinct eigenvalues. Yet

every matrix with distinct eigenvalues is similar @diagonal matrix and conjugation by an
invertible matrix is an algebra homomorphism. By naturality, it suffices to show that 6, ¢ agree on

diagonal matrices. By naturality using the algebra homomorphism C"— M, (C) which identifies
n-vectors with diagonal matrices, it suffices to see that 6, ¢ have the same componentsat €2 By
naturality using the projections (as before inthe case n=2), we see that the components of 6, ¢ at
C™ arebothequalto fxfx...xf. Q.E.D.

This motivates a definition of derivative for an arbitrary natural transformation 8: U—U.
We introduce the functor T : 4 — 4 which assigns to each algebra A€ the algebra T(A) of
upper-triangular 2 x 2 matrices of the form
a b
b |

with entries a, bEA. There are continuous natural transformations
Nn:U—-0UT and =:UT—U
whose components at the algebra A are given by

a 1 a b
nA(a)=[0 ] and zA[G a]=b.

Definition The derivative of a natural transformation 6:U— U is the composite



ross
Note
to a


9" : U UT uT U.

Proposition 1 If 0: U ——U is a continuous natural transformationwith 0, =£: C——C then the

derivative of 9 is the unique confinuous natural transformation ©':U——-U satisfying the equation (8') ¢
=f'.

Proof In the proof of Schanuel's Theorem we saw that
5 A1 f(A) £'(0)
W[o xl - l 0 f(h)]

where W is the algebra of upper-triangular 2 x 2 matrices. Clearly T(C) is a subalgebra of W, so,
by naturality, 8y, isjust the restriction of 8y to T(C). So the above displayed matrix equation

holds with W replacedby T(C). Using the definition of 8', we obtain the equation (8"}, = ©-°
8 ° e which can be evaluated at AEC to yield (8') c(A) = £'(A). Sincethe derivative f' of an

analytic function f is analytic, indeed 6' corresponds to f' under the bijection of Schanuel's
Theorem. Q.E.D.

We would like to contrast this approach to derivatives with that of synthetic algebraic
geometry [DG] which would begin with the category C of finitely presented commutative C-algebras
and the category

E= [Cr S]
of set-valued functorson C. The fdrgetful functor R: C— & isaring object of £ Of course R is
represented by the polynomial algebra C[x] ina single indeterminate x; that is, there is a natural
bijection
R(A)= C(CIx],A).

Note that C[x] is finitely presented but not finite dimensional and so is not an object of the
category 4. The analogue of the Schanuel Theorem here is a consequence of the Yoneda Lemma:
natural transformations 6: R —— R are in natural bijection with polynomial functions p : C — C via the
equation 0~ = p.

Notice that the functor T : 4 — 4 can be defined on all C-algebras, finite dimensional or
not, and as such restricts to take commutative algebras to commutative algebras. In particular, we

can regard T as a functor T: C —C can mimic the definition of derivative to
endomorphisms of R in E: the derivative of 8: R —> R is the composite
0
6 : R—'>RT ——>RT——>R.

(How does this relate to synthetic algebraic geometry? There is a specific object DEE which

is the subobject of R given by
D(A)={acA: a?=0).
-Clearly D is represented by the quotient algebra C[x]/(x?). The tangent bundle of an object SEE
‘is the cartesian internal hom [D,S] given by
[D,S](A) = E£(D(-) x C(A,-),5())

E(CCIx]/(x?),-) x C(A,-),5(-))
E(CCX]/(x*)® A,-),5(-))
E(CAX]/(x?),-),5())
S(A[X]/ (x?)).

In

I

1




Notice that Afx]/(x?)=T(A) where a+b x corresponds to the matrix

)

So the tangent bundle of S can be identified with the composite functor ST. It is convenient to
write the elements of T(A) inthe form a + bd where a, b€A, where a isidentified with its

product with the identity matrix, and where & is the matrix with 1 as the top right entry and other

entries alt 0.
Actually, the tangent bundle involves a canonical projection evy: [D,S]—S whichis induced

by the arrow 0:1-—>D in £ whose component at A picks out the element 0 of D(A). Thereis
anatural transformation # : T— 1, whose component at A is the algebra homomorphism @, :
T(A)— A, a+bd —a. Thisinducesan arrow Sx:ST — S which corresponds to the canonical
projection under the identification of ST with [D,S]. For any arrow s:1—S, the tangent space
to S at s is the pullback 5T, of s and S=.

Each arrow 8:5— X in ‘£ induces the following commutative square.

6

T
S T———X T
Ssr,l lxn
S — > X
0

Therefore, each global point s:1—S induces an arrow 8'(s): ST, — XTg.,, called the

derivative of © at s, such that the following diagram commutes.

ST > ST
S

0
6 N
X T, ———> XT

l pullback lX b4

1—> S —>X
5 0

So there is a sense in which every arrow in E is differentiable.

There is a canonical stucture of commutative ring on the object R inthe category E (since
productsin E are formed valuewise and each value R(A) of R isnaturally a ring by virtue of the
algebra structure on A). 1t follows that, for each object S of £ we have a commutative ring p, : R
x § —S in the category ‘E/S. We shall show that, if $: C—— & preserves pullbacks, then the
object Sx:ST——S of E/S has a canonical structure of module over thering p, : R x5 —5.
Then we have a right to call Sm:ST—S a vector bundle. This is stronger than just saying that each
tangent space ST, is an R-module in Z.

Observe that st : T — 1. is an abelian group in [C, C]/1, with the components of the
addition given by

T(A)x , T(A)——T(A), (@+bd,a+cd)+—>a+(b+c)d. _
1t follows that any functor S: C—— & which preserves pullbacks determines an abelian group Sz :
ST—>S in the category ‘E/S. The multiplication of R restricts to give an action

RxD—D, (a,a)t+——aa




of R on D and so corresponds to an arrow R — [D,D]. But [D,D] acts on [D,S] by internal
composition

[D, D} x [D, 5}—[D, 5],
so R actson [D,S] by restriction of scalars. This transports to an actionof R on ST. Note that the
pullbackof p, :RxS—S and Sn:5T —S isjust R x ST, so we have an action of the ring p,:
Rx S —5 on the object Sx:ST —S in £/S. This abelian group and this action give the
module structureon Sx:5T—S.

We now wish to consider general linear groups in %£. Let V, W be any R-modules in E.
Then there is an R-module Lin(V,W) in % which is the intersection of the equalizers of the

following two pairs of arrows.

nfg/zmw*maiki

[V, W] o >V xV, W]
[RxV,Rx W]
X = -;1
R/ \[i

»>[RxV,W
[V, W] [ 1] [ ]

The universal property of this construction is that arrows Z — Lin(V,W) in E are in natural
bijection with (p, : R x Z— Z)-module homomorphisms
V x Z wesmrmm= W x Z

N
Z

in E/Z. We obtain an R-algebra Lin(V) = Lin(V,W) by taking internal composition as
multiplication.

For any objects X, Y of % thereis an object Inv(X,Y) which is the intersection of the
equallzers of the following pairs of arrows.

/%

IX,Y]x [Y,X] > [X,X]
/ ’ 1Y"

X, Y]x [Y,X] Wﬂ
wmxmy

The universal property of this construction is that arrows Z —Inv(X,Y) in E are in natural
bijection with invertible arrows
XxZ—>YxZ

SN
Z

‘in E/Z. ltis easily seen that the composite




proj1
Inv(X,Y)—— [X,Y]x [Y,X] —[X,Y]

is a monomorphism, so we regard Inv(X,Y) as a subobject of [X,Y].
The general linear group of an R-module V in E is GL(V) = Lin(V) N Inv(V,V) whichisa

group under internal composition. : _
As an example, let us calculate Lin(n) = Lin(R") and GL{n) = GL(R"). The elements of

Lin(n)(A) are in bijection with natural transformations C(A,~) — Lin(R"), and so, in bijection with
module homomorphisms as below.
R"x C(A,-) > R"x C(A,-)

Ph A 2

C (Ar _)
However, the functor R"x (C(A,-) is representable with representing object the polynomial algebra
Alx;, . . ., X,]; 80 mere commutative triangles as above in £ are in bijection with commutativ

S

Alx ,'...,xn]——}bA[x yeeea X ]

n

triangles as below in C.
A

But such triangles are in bijection with listsof n elements of Alxy, ..., x,|; thatis, with listsof r

polynomials over A. In order that the corresponding triangle in £ should represent a module
homomorphism, these polynomials should be homogeneous of degree 1; but such a list can be

identified with an n x n matrix in A. The module homomorphism is invertible if and only if the

corresponding matrix is invertible. So we have the natural isomorphisms
Lin(n}(A) =Mat(n, A), GL(n)A) = GL(n, A).

Proposition 2 For any R-module V in E, the tangent space of GL(V) at the identity element is
isomorphic to the R-module Lin(V).

Proof We justindicate the case V=R™ The tangent bundle of GL(n) is GL(n)T(A) = GL{n,T(A)),
and this consists of invertible nx n matrices of the form a + t8 where a, t are nxn matrices over
A. The fibre over the identity element consists of the matrices of the form 1 +td. (Eachsuchis

invertible with inverse 1-1t8 since 88 =0.) These are in bijection with elements t of Lin(n)(A). Q.

Let G be any functor from C to the category of groups which preserves pullbacks. Then G
isa group in Z and the tangent space GT, at the unit global element 1:1—G is an R-module

which we denote by Lie(G). We have a short exact sequence
incl Gx

1— Lie(G) GT G 1

whichis splitby Gu where +:1——T isthe natural transformation whose component at A takes

aEA to aET(A). We can define an action of G on Lie{G) by taking the component at A to be the
function
G(A) x Lie(G)A) —> Lie(G)(A), (g, x) —— (GuU)(X) g (Gu)(x) L.

Corresponding to this action there is the adjoint representation
Ad: G—[Lie(G), Lie(G)]




which actually lands in GL(Lie(G)). This induces a homomorphism
Lie(Ad): Lie(G) — Lie(GL(Lie(G)))
on the tangent spaces at the identities. By Proposition 2, Lie(GL(Lie(G)))= Lin(Lie(G)) whose
composite with Lie(Ad) is denoted by
ad : Lie(G) — Lin(Lie(G)),
and this corresponds to a "bilinear" arrow
Lie(G) x Lie(G) — Lie(G)

called the Lie bracket. With this, Lie(G) becomes a Lie algebra in £
As an example of course we could take G = GL(n). Then Lie(G)=Mat(n) and the bracket has
component at A given by the commutator

Mat(n, A) x Mat(n, A) — Mat(n, A), (s,t) —[s,tj=st-ts.
If we take, say, the orthogonal subgroup O(n) of GL(n) (where O(n)(A)=0(n, A) is the group of

orthogonal matrices with entries in A), it is easy to see that Lie(O(n))A) is the Lie subalgebra of
Mat(n, A) consisting of the skew symmetric matrices.

The problem with both the toposes E and [4,S] is that they do not contain the complex

analytic manifolds in a suitable way. The category E is suitable for complex algebraic varieties,
indeed, complex schemes; we need to replace C by a suitable category of analytic algebras. Since
we are really interested in the continuous arrows in the category [4,S], we might consider

replacing it by the topos {4,351 where is a suitable topos of topological spaces (such as [Jns;
P g1 by P ?} P pologt P

page 21]11; but we also seem to need to extend 4. We make the following suggestions about such an
approach.

PP Take A to be the category of complex Banach algebras whose dimensions as vector spaces
are countable; the arrows are continuous algebra homomorphisms. Take @ to be Johnstone's
topos containing sequential spaces. Since each object of .4 is a sequential space, we have an
underlying functor U: A—@. Put € = [A, 3] which, of course, is again a topos. Notice that
Shanuel's theorem meodifies easily to imply a bijection between endomorphisms on U in & and
analytic endofunctions on C. Thus the topos & contains a model of the "line" from the viewpoint
of complex manifolds. :
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