

Functorial Complex Analysis

Let \mathcal{A} denote the category whose objects are finite dimensional unital associative algebras over the complex number field \mathbb{C} and whose arrows are algebra homomorphisms. Let

$$U: \mathcal{A} \rightarrow \mathcal{S}$$

be the forgetful functor into the category \mathcal{S} of sets. A natural transformation

$$\theta: U \rightarrow U$$

is said to be *continuous* when, for all $A \in \mathcal{A}$, the component $\theta_A: UA \rightarrow UA$ is continuous for the canonical topology on the set UA transported across any linear isomorphism $A \cong \mathbb{C}^{\dim A}$.

Schanuel Theorem [Sch] *There is a bijection between continuous natural transformations*

$$\theta: U \rightarrow U$$

and analytic functions $f: \mathbb{C} \rightarrow \mathbb{C}$ under which θ corresponds to $f = \theta_{\mathbb{C}}$.

Proof One question which must be addressed is why, for continuous natural $\theta: U \rightarrow U$, is $f = \theta_{\mathbb{C}}$ analytic. The two projections $p_i: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ are algebra homomorphisms, so the following squares commute for $i = 1, 2$; so $\theta_{\mathbb{C} \times \mathbb{C}} = f \times f: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{C}$.

$$\begin{array}{ccc} \mathbb{C} \times \mathbb{C} & \xrightarrow{\theta_{\mathbb{C} \times \mathbb{C}}} & \mathbb{C} \times \mathbb{C} \\ p_i \downarrow & & \downarrow p_i \\ \mathbb{C} & \xrightarrow{\theta_{\mathbb{C}}} & \mathbb{C} \end{array}$$

Consider the algebra W of upper-triangular 2×2 matrices

$$\begin{bmatrix} \lambda & \sigma \\ 0 & \mu \end{bmatrix}$$

with complex entries. For each complex number α , we have an algebra homomorphism $h_{\alpha}: \mathbb{C} \times \mathbb{C} \rightarrow W$ given by

$$h_{\alpha}(\lambda, \mu) = \begin{bmatrix} \lambda & \alpha(\lambda - \mu) \\ 0 & \mu \end{bmatrix}.$$

Naturality implies that the following square commutes for all α .

$$\begin{array}{ccc} \mathbb{C} \times \mathbb{C} & \xrightarrow{\theta_{\mathbb{C} \times \mathbb{C}}} & \mathbb{C} \times \mathbb{C} \\ h_{\alpha} \downarrow & & \downarrow h_{\alpha} \\ W & \xrightarrow{\theta_W} & W \end{array}$$

It follows that, for all $\alpha, \lambda, \mu \in \mathbb{C}$, we have the equality

$$\theta_W \begin{bmatrix} \lambda & \alpha(\lambda - \mu) \\ 0 & \mu \end{bmatrix} = \begin{bmatrix} f(\lambda) & \alpha(f(\lambda) - f(\mu)) \\ 0 & f(\mu) \end{bmatrix}.$$

Take $\lambda \neq \mu$ and $\alpha = 1/(\lambda - \mu)$. This gives the following identity.

$$\theta_W \begin{bmatrix} \lambda & 1 \\ 0 & \mu \end{bmatrix} = \begin{bmatrix} f(\lambda) & \frac{f(\lambda)-f(\mu)}{\lambda-\mu} \\ 0 & f(\mu) \end{bmatrix}$$

Using the continuity of θ , we see that the left side of the above identity has limit

$$\theta_W \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$$

as μ tends to λ . It follows that the right side also has a limit as μ tends to λ ; by inspection of the top right entry of the matrix, we deduce that f is differentiable. Indeed we have the formula

$$\theta_W \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} f(\lambda) & f'(\lambda) \\ 0 & f(\lambda) \end{bmatrix}.$$

It is well known that any differentiable function of a complex variable is analytic. So f is analytic.

Now suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is any analytic function. Then there is a Taylor series

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

which allows us to define $\theta_A: U_A \rightarrow U_A$ for any algebra $A \in \mathcal{A}$ by

$$\theta_A(a) = \sum_{n=0}^{\infty} c_n a^n.$$

Clearly this defines a continuous natural transformation $\theta: U \rightarrow U$ with $\theta_{\mathbb{C}} = f$. This shows that the assignment of the theorem is surjective.

It remains to show the assignment is injective. Suppose $\theta, \phi: U \rightarrow U$ are continuous and natural with $\theta_{\mathbb{C}} = f = \phi_{\mathbb{C}}$. Every algebra A is isomorphic to a subalgebra of a matrix algebra $M_n(\mathbb{C})$, so, by naturality, it suffices to show that θ, ϕ have equal components at each algebra $M_n(\mathbb{C})$. Every matrix is a limit of a sequence of matrices with distinct eigenvalues. By continuity of θ, ϕ it suffices to show their components at $M_n(\mathbb{C})$ equal on matrices with distinct eigenvalues. Yet every matrix with distinct eigenvalues is similar to a diagonal matrix and conjugation by an invertible matrix is an algebra homomorphism. By naturality, it suffices to show that θ, ϕ agree on diagonal matrices. By naturality using the algebra homomorphism $\mathbb{C}^n \rightarrow M_n(\mathbb{C})$ which identifies n -vectors with diagonal matrices, it suffices to see that θ, ϕ have the same components at \mathbb{C}^n . By naturality using the projections (as before in the case $n=2$), we see that the components of θ, ϕ at \mathbb{C}^n are both equal to $f \times f \times \dots \times f$. Q. E. D.

This motivates a definition of derivative for an arbitrary natural transformation $\theta: U \rightarrow U$. We introduce the functor $T: \mathcal{A} \rightarrow \mathcal{A}$ which assigns to each algebra $A \in \mathcal{A}$ the algebra $T(A)$ of upper-triangular 2×2 matrices of the form

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$

with entries $a, b \in A$. There are continuous natural transformations

$$\eta: U \rightarrow UT \quad \text{and} \quad \tau: UT \rightarrow U$$

whose components at the algebra A are given by

$$\eta_A(a) = \begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix} \quad \text{and} \quad \tau_A \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} = b.$$

Definition The *derivative* of a natural transformation $\theta: U \rightarrow U$ is the composite

$$\theta' : U \xrightarrow{\eta} UT \xrightarrow{\theta_T} UT \xrightarrow{\tau} U.$$

Proposition 1 If $\theta : U \rightarrow U$ is a continuous natural transformation with $\theta_C = f : \mathbb{C} \rightarrow \mathbb{C}$ then the derivative of θ is the unique continuous natural transformation $\theta' : U \rightarrow U$ satisfying the equation $(\theta')_C = f'$.

Proof In the proof of Schanuel's Theorem we saw that

$$\theta_W \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} f(\lambda) & f'(\lambda) \\ 0 & f(\lambda) \end{bmatrix}$$

where W is the algebra of upper-triangular 2×2 matrices. Clearly $T(\mathbb{C})$ is a subalgebra of W , so, by naturality, $\theta_{T(\mathbb{C})}$ is just the restriction of θ_W to $T(\mathbb{C})$. So the above displayed matrix equation holds with W replaced by $T(\mathbb{C})$. Using the definition of θ' , we obtain the equation $(\theta')_C = \tau_C \circ \theta_{T(\mathbb{C})} \circ \eta_C$ which can be evaluated at $\lambda \in \mathbb{C}$ to yield $(\theta')_C(\lambda) = f'(\lambda)$. Since the derivative f' of an analytic function f is analytic, indeed θ' corresponds to f' under the bijection of Schanuel's Theorem. **Q. E. D.**

We would like to contrast this approach to derivatives with that of synthetic algebraic geometry [DG] which would begin with the category \mathcal{C} of *finitely presented commutative* \mathbb{C} -algebras and the category

$$\mathcal{E} = [\mathcal{C}, \mathcal{S}]$$

of set-valued functors on \mathcal{C} . The forgetful functor $R : \mathcal{C} \rightarrow \mathcal{S}$ is a ring object of \mathcal{E} . Of course R is represented by the polynomial algebra $\mathbb{C}[x]$ in a single indeterminate x ; that is, there is a natural bijection

$$R(A) \cong \mathcal{C}(\mathbb{C}[x], A).$$

Note that $\mathbb{C}[x]$ is finitely presented but not finite dimensional and so is not an object of the category \mathcal{A} . The analogue of the Schanuel Theorem here is a consequence of the Yoneda Lemma: *natural transformations $\theta : R \rightarrow R$ are in natural bijection with polynomial functions $p : \mathbb{C} \rightarrow \mathbb{C}$ via the equation $\theta_C = p$.*

Notice that the functor $T : \mathcal{A} \rightarrow \mathcal{A}$ can be defined on all \mathbb{C} -algebras, finite dimensional or not, and as such restricts to take commutative algebras to commutative algebras. In particular, we can regard T as a functor $T : \mathcal{C} \rightarrow \mathcal{C}$. \mathcal{E} can mimic the definition of derivative to endomorphisms of R in \mathcal{E} : the *derivative* of $\theta : R \rightarrow R$ is the composite

$$\theta' : R \xrightarrow{\eta} RT \xrightarrow{\theta_T} RT \xrightarrow{\tau} R.$$

How does this relate to synthetic algebraic geometry? There is a specific object $D \in \mathcal{E}$ which is the subobject of R given by

$$D(A) = \{ a \in A : a^2 = 0 \}.$$

Clearly D is represented by the quotient algebra $\mathbb{C}[x]/\langle x^2 \rangle$. The *tangent bundle* of an object $S \in \mathcal{E}$ is the cartesian internal hom $[D, S]$ given by

$$\begin{aligned} [D, S](A) &= \mathcal{E}(D(-) \times \mathcal{C}(A, -), S(-)) \\ &\cong \mathcal{E}(\mathcal{C}(\mathbb{C}[x]/\langle x^2 \rangle, -) \times \mathcal{C}(A, -), S(-)) \\ &\cong \mathcal{E}(\mathcal{C}(\mathbb{C}[x]/\langle x^2 \rangle \otimes A, -), S(-)) \\ &\cong \mathcal{E}(\mathcal{C}(A[x]/\langle x^2 \rangle, -), S(-)) \\ &\cong S(A[x]/\langle x^2 \rangle). \end{aligned}$$

Notice that $A[x]/\langle x^2 \rangle \cong T(A)$ where $a + b x$ corresponds to the matrix

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}.$$

So the tangent bundle of S can be identified with the composite functor ST . It is convenient to write the elements of $T(A)$ in the form $a + b \delta$ where $a, b \in A$, where a is identified with its product with the identity matrix, and where δ is the matrix with 1 as the top right entry and other entries all 0.

Actually, the tangent bundle involves a *canonical projection* $ev_0 : [D, S] \rightarrow S$ which is induced by the arrow $0 : 1 \rightarrow D$ in \mathcal{E} whose component at A picks out the element 0 of $D(A)$. There is a natural transformation $\pi : T \rightarrow 1_C$ whose component at A is the algebra homomorphism $\pi_A : T(A) \rightarrow A$, $a + b \delta \mapsto a$. This induces an arrow $S\pi : ST \rightarrow S$ which corresponds to the canonical projection under the identification of ST with $[D, S]$. For any arrow $s : 1 \rightarrow S$, the *tangent space to S at s* is the pullback ST_s of s and $S\pi$.

Each arrow $\theta : S \rightarrow X$ in \mathcal{E} induces the following commutative square.

$$\begin{array}{ccc} ST & \xrightarrow{\theta_T} & XT \\ S\pi \downarrow & & \downarrow X\pi \\ S & \xrightarrow{\theta} & X \end{array}$$

Therefore, each global point $s : 1 \rightarrow S$ induces an arrow $\theta'(s) : ST_s \rightarrow XT_{\theta \circ s}$, called the *derivative of θ at s* , such that the following diagram commutes.

$$\begin{array}{ccccc} ST_s & \xrightarrow{\quad} & ST & \xrightarrow{\theta_T} & XT \\ \theta'(s) \searrow & & \downarrow & & \downarrow X\pi \\ & & XT_{\theta \circ s} & \xrightarrow{\quad} & XT \\ & & \downarrow & \text{pullback} & \downarrow \\ 1 & \xrightarrow{s} & S & \xrightarrow{\theta} & X \end{array}$$

So there is a sense in which every arrow in \mathcal{E} is differentiable.

There is a canonical structure of commutative ring on the object R in the category \mathcal{E} (since products in \mathcal{E} are formed valuewise and each value $R(A)$ of R is naturally a ring by virtue of the algebra structure on A). It follows that, for each object S of \mathcal{E} , we have a commutative ring $p_2 : R \times S \rightarrow S$ in the category \mathcal{E}/S . We shall show that, if $S : \mathcal{C} \rightarrow \mathcal{S}$ preserves pullbacks, then the object $S\pi : ST \rightarrow S$ of \mathcal{E}/S has a canonical structure of module over the ring $p_2 : R \times S \rightarrow S$. Then we have a right to call $S\pi : ST \rightarrow S$ a *vector bundle*. This is stronger than just saying that each tangent space ST_s is an R -module in \mathcal{E} .

Observe that $\pi : T \rightarrow 1_C$ is an abelian group in $[C, C]/1_C$ with the components of the addition given by

$$T(A) \times_A T(A) \rightarrow T(A), \quad (a + b \delta, a + c \delta) \mapsto a + (b + c) \delta.$$

It follows that any functor $S : \mathcal{C} \rightarrow \mathcal{S}$ which preserves pullbacks determines an abelian group $S\pi : ST \rightarrow S$ in the category \mathcal{E}/S . The multiplication of R restricts to give an action

$$R \times D \rightarrow D, \quad (\alpha, a) \mapsto \alpha a$$

of R on D and so corresponds to an arrow $R \rightarrow [D, D]$. But $[D, D]$ acts on $[D, S]$ by internal composition

$$[D, D] \times [D, S] \rightarrow [D, S],$$

so R acts on $[D, S]$ by restriction of scalars. This transports to an action of R on ST . Note that the pullback of $p_2 : R \times S \rightarrow S$ and $S\pi : ST \rightarrow S$ is just $R \times ST$, so we have an action of the ring $p_2 : R \times S \rightarrow S$ on the object $S\pi : ST \rightarrow S$ in \mathcal{E}/S . This abelian group and this action give the module structure on $S\pi : ST \rightarrow S$.

We now wish to consider general linear groups in \mathcal{E} . Let V, W be any R -modules in \mathcal{E} . Then there is an R -module $\text{Lin}(V, W)$ in \mathcal{E} which is the intersection of the equalizers of the following two pairs of arrows.

$$\begin{array}{ccccc} & [1, \text{diag}] & [V, W \times W] & [1, +] & \\ & \nearrow & \searrow & & \\ [V, W] & \xrightarrow{[+, 1]} & [V \times V, W] & & \\ & & & & \\ & R \times - & [R \times V, R \times W] & [., 1] & \\ & \nearrow & \searrow & & \\ [V, W] & \xrightarrow{[., 1]} & [R \times V, W] & & \end{array}$$

The universal property of this construction is that arrows $Z \rightarrow \text{Lin}(V, W)$ in \mathcal{E} are in natural bijection with $(p_2 : R \times Z \rightarrow Z)$ -module homomorphisms

$$\begin{array}{ccc} V \times Z & \xrightarrow{\quad} & W \times Z \\ \text{proj}_2 \searrow & & \swarrow \text{proj}_2 \\ & Z & \end{array}$$

in \mathcal{E}/Z . We obtain an R -algebra $\text{Lin}(V) = \text{Lin}(V, V)$ by taking internal composition as multiplication.

For any objects X, Y of \mathcal{E} , there is an object $\text{Inv}(X, Y)$ which is the intersection of the equalizers of the following pairs of arrows.

$$\begin{array}{ccc} & 1 & \\ & \nearrow & \searrow "1_X" \\ [X, Y] \times [Y, X] & \xrightarrow{\quad \circ \quad} & [X, X] \\ & & \\ & 1 & \\ & \nearrow & \searrow "1_Y" \\ [X, Y] \times [Y, X] & & [Y, Y] \\ & \searrow \text{switch} & \nearrow \text{switch} \\ & [Y, X] \times [X, Y] & \end{array}$$

The universal property of this construction is that arrows $Z \rightarrow \text{Inv}(X, Y)$ in \mathcal{E} are in natural bijection with invertible arrows

$$\begin{array}{ccc} X \times Z & \xrightarrow{\quad} & Y \times Z \\ \text{proj}_2 \searrow & & \swarrow \text{proj}_2 \\ & Z & \end{array}$$

in \mathcal{E}/Z . It is easily seen that the composite

$$\text{Inv}(X, Y) \longrightarrow [X, Y] \times [Y, X] \xrightarrow{\text{proj}_1} [X, Y]$$

is a monomorphism, so we regard $\text{Inv}(X, Y)$ as a subobject of $[X, Y]$.

The *general linear group* of an R -module V in \mathcal{E} is $\text{GL}(V) = \text{Lin}(V) \cap \text{Inv}(V, V)$ which is a group under internal composition.

As an example, let us calculate $\text{Lin}(n) = \text{Lin}(R^n)$ and $\text{GL}(n) = \text{GL}(R^n)$. The elements of $\text{Lin}(n)(A)$ are in bijection with natural transformations $C(A, -) \longrightarrow \text{Lin}(R^n)$, and so, in bijection with module homomorphisms as below.

$$\begin{array}{ccc} R^n \times C(A, -) & \xrightarrow{\quad} & R^n \times C(A, -) \\ \text{proj}_2 \searrow & & \swarrow \text{proj}_2 \\ & C(A, -) & \end{array}$$

However, the functor $R^n \times C(A, -)$ is representable with representing object the polynomial algebra $A[x_1, \dots, x_n]$; so mere commutative triangles as above in \mathcal{E} are in bijection with commutative triangles as below in \mathcal{C} .

$$\begin{array}{ccc} & A & \\ & \swarrow & \searrow \\ A[x_1, \dots, x_n] & \longrightarrow & A[x_1, \dots, x_n] \end{array}$$

But such triangles are in bijection with lists of n elements of $A[x_1, \dots, x_n]$; that is, with lists of n polynomials over A . In order that the corresponding triangle in \mathcal{E} should represent a module homomorphism, these polynomials should be homogeneous of degree 1; but such a list can be identified with an $n \times n$ matrix in A . The module homomorphism is invertible if and only if the corresponding matrix is invertible. So we have the natural isomorphisms

$$\text{Lin}(n)(A) \cong \text{Mat}(n, A), \quad \text{GL}(n)(A) \cong \text{GL}(n, A).$$

Proposition 2 For any R -module V in \mathcal{E} , the tangent space of $\text{GL}(V)$ at the identity element is isomorphic to the R -module $\text{Lin}(V)$.

Proof We just indicate the case $V = R^n$. The tangent bundle of $\text{GL}(n)$ is $\text{GL}(n)T(A) \cong \text{GL}(n, T(A))$, and this consists of invertible $n \times n$ matrices of the form $a + t\delta$ where a, t are $n \times n$ matrices over A . The fibre over the identity element consists of the matrices of the form $1 + t\delta$. (Each such is invertible with inverse $1 - t\delta$ since $\delta\delta = 0$.) These are in bijection with elements t of $\text{Lin}(n)(A)$. **Q.E.D.**

Let G be any functor from \mathcal{C} to the category of groups which preserves pullbacks. Then G is a group in \mathcal{E} and the tangent space GT_η at the unit global element $\eta : 1 \longrightarrow G$ is an R -module which we denote by $\text{Lie}(G)$. We have a short exact sequence

$$1 \longrightarrow \text{Lie}(G) \xrightarrow{\text{incl}} GT \xrightarrow{G\pi} G \longrightarrow 1$$

which is split by $G\iota$ where $\iota : 1 \longrightarrow T$ is the natural transformation whose component at A takes $a \in A$ to $a \in T(A)$. We can define an action of G on $\text{Lie}(G)$ by taking the component at A to be the function

$$G(A) \times \text{Lie}(G)(A) \longrightarrow \text{Lie}(G)(A), \quad (g, x) \mapsto (G\iota)(x) \cdot g \cdot (G\iota)(x)^{-1}.$$

Corresponding to this action there is the *adjoint representation*

$$\text{Ad} : G \longrightarrow [\text{Lie}(G), \text{Lie}(G)]$$

which actually lands in $GL(Lie(G))$. This induces a homomorphism
 $Lie(Ad) : Lie(G) \longrightarrow Lie(GL(Lie(G)))$

on the tangent spaces at the identities. By Proposition 2, $Lie(GL(Lie(G))) \cong Lin(Lie(G))$ whose composite with $Lie(Ad)$ is denoted by

$$ad : Lie(G) \longrightarrow Lin(Lie(G)),$$

and this corresponds to a "bilinear" arrow

$$Lie(G) \times Lie(G) \longrightarrow Lie(G)$$

called the *Lie bracket*. With this, $Lie(G)$ becomes a Lie algebra in \mathcal{E} .

As an example of course we could take $G = GL(n)$. Then $Lie(G) = Mat(n)$ and the bracket has component at A given by the commutator

$$Mat(n, A) \times Mat(n, A) \longrightarrow Mat(n, A), (s, t) \longmapsto [s, t] = s t - t s.$$

If we take, say, the orthogonal subgroup $O(n)$ of $GL(n)$ (where $O(n)(A) = O(n, A)$ is the group of orthogonal matrices with entries in A), it is easy to see that $Lie(O(n))(A)$ is the Lie subalgebra of $Mat(n, A)$ consisting of the skew symmetric matrices.

The problem with both the toposes \mathcal{E} and $[\mathcal{A}, \mathcal{S}]$ is that they do not contain the complex analytic manifolds in a suitable way. The category \mathcal{E} is suitable for complex algebraic varieties, indeed, complex schemes; we need to replace \mathcal{C} by a suitable category of analytic algebras. Since we are really interested in the continuous arrows in the category $[\mathcal{A}, \mathcal{S}]$, we might consider replacing it by the topos $[\mathcal{A}, \mathcal{T}]$ where \mathcal{T} is a suitable topos of topological spaces (such as $[Jns]$; page 21)); but we also seem to need to extend \mathcal{A} . We make the following suggestions about such an approach.

Take \mathcal{A} to be the category of complex Banach algebras whose dimensions as vector spaces are countable; the arrows are continuous algebra homomorphisms. Take \mathcal{T} to be Johnstone's topos containing sequential spaces. Since each object of \mathcal{A} is a sequential space, we have an underlying functor $U : \mathcal{A} \longrightarrow \mathcal{T}$. Put $\mathcal{E} = [\mathcal{A}, \mathcal{T}]$ which, of course, is again a topos. Notice that Shanel's theorem modifies easily to imply a bijection between endomorphisms on U in \mathcal{E} and analytic endofunctions on \mathbb{C} . Thus the topos \mathcal{E} contains a model of the "line" from the viewpoint of complex manifolds.

References

- [DG] M. DeMeyer and P. Gabriel, *Introduction to Algebraic Geometry and Algebraic Groups* (North-Holland Mathematical Studies 39, 1980)
- [Sch] S. Schanuel, Continuous extrapolation to triangular matrices characterizes smooth functions, *J. Pure Appl. Algebra* 24 (1982) 59-71.
- [Jns] P.T. Johnstone, *Topos Theory* (Academic Press, London Math Society Monographs 10 (1977)).