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This is a talk about what we are prepared to call numbers. As well as the algebraic and
geometric aspects of numbers, we will look a little at their history and philosophy. History
is a difficult subject. The history of mathematics is even harder: the historian needs to be a
mathematician.

The broad history of geometry is probably familiar to you. It provides steps we can

look for in any area of mathematics.

Step 1 Naive subject The 3D space that we see all around us was the starting point of

geometry. Learning about it began by experience and some logical deduction. In such a

nebulous framework, contradictions can arise.

Step 2 Axiomatic method This involves listing of basic truths. Everything else should be

deduced logically from these axioms. Euclid did this for geometry.

Step 3 Questioning of axioms Are all the axioms "true"? Are they independent or can one

be deduced from the others? Do the axioms completely characterize 3D space? In geometry
there was long debate over the Parallels Axiom (that is, there exists a unique line parallel to
a given line and through a given point) because it required the concept of the whole line.

There were attempts to prove it from the other axioms of Euclid.

Step 4 Non-standard models Axioms are shown to be independent by constructing, from

an assumed model of the full set of axioms, a model satisfying all but one of the axioms.
Early last century, Bolyai and Lobatchewsky did this for the Parallels Axiom. They created

Non-Euclidean Geometries — the Parallels Axiom is replaced by something else.

Step 5 Vastly weakened axioms and classification problems Curves, surfaces, manifolds,

Hilbert space can be studied axiomatically as spaces of a generalised kind. This does not
contradict Euclid: it enhances the theory since it tells us more about our original naive
space. Many major projects in mathematics have been concerned with the classification of

all structures satisfying certain axioms.



Here I am interested in discussing the first few analogous steps in the area of algebra.

Step 1 Naive subject Numbers are the naive subject; they are older than history.

Step 2 Axiomatic method This required the symbolic method taken to Europe by the

Arabs (Al Jebr = bone-setting). Axioms therefore came to algebra much later than to
geometry. The rules of arithmetic were certainly discussed by Euler (1740s). This was after
a hotly disputed struggle about what a number should be: hence we are left with
disparaging names such as "irrational" and "imaginary"; but even "zero" and "negatives"

were vilified. The axioms for what we now call a field had become familiar by Euler's

time.
FIELD AXIOMS
associative
(@a+b)+c=a+((b+0 (ab)c=a(bo)
units
a+0=a=0+a al=a=1a
distributive
a(b+c) =ab+ac
(@a+b)c=ac+bc
cancellation
atc=Db+cimpliesa=D> ac=bcand c#20 imply a=Db
c+a =c+b implies a="> ca=cband c#20 imply a=D>b
inverses
a+(-a)=0=(a +a az0 implies aal=1=a'la
commutative
a+b =Db+a ab=>ba

There is some redundancy since inverses imply cancellation; also commutative simplifies
some of the earlier axioms.

Here are the number systems you are used to, each an extension of its predecessor.

N is the collection of natural numbers 0,1, 2, 3,4, ...

Z is the collection of integers' 0, ¥1,F2,%3,%4,...

Q is the collection of rational numbers’ m/n for m, n integers with n #0

R is the collection of real numbers represented by decimals such as
—123456789[10111213141516171819202122232425 . . .

' The German word for number begins with Z.
2Presumably Q stands for quotients.



C denotes the collection of complex numbers a +ib where a, b are real.

N satisfies all axioms except "inverses".
Z satisfies all axioms except "inverses" for multiplication.
Q R, C are all fields.

People spoke of a vague and mysterious Principle of Permanence of Form (PPF) stating
that whenever a number system was extended, while new rules were gained, all the old
rules should apply. In fact, this is not a general rule at all: in going from R to C again is
that every polynomial of positive degree has a zero (the so-called Fundamental Theorem
of Algebra), however the well-behaved order relation is lost.

The mystical introduction to complex numbers (still practised by many teachers and
lecturers) is to postulate the existence of some "unknowable" number i with the property
that i2 = -1 which is supposed to mix in with the real numbers in such a way that the

result still satisfies the field axioms. PPF still lives!

William Rowan Hamilton (Irish mathematician, 3 August 1805 — 2 September 1865)
asked (around 1828): "What is next after C?"

He (and others) had risen above the mystical description of C and realised that C was
just the Euclidean plane R? with a special multiplication. [Why is the mysticism
perpetuated by calling this the "Argand diagram"?] As you know, Descartes had identified
points on the Euclidean line with real numbers and points in the Euclidean plane with
pairs (a,b) of real numbers. There is an obvious addition for points in the plane

(a,b)+(c,d)=(a+c, b+d)
which can be described geometrically by saying that the four points
0,0),(a,b),(a+c, b+d), (c,d)
form a parallelogram (the degenerate case where (0,0), (a,b), (c,d) are collinear reduces to
addition on the line). The unit for this addition is the origin 0 = (0,0).
The similarly obvious multiplication of points in the plane is
(a,b)(c,d)=(ac, bd).
While this is of some interest, it does NOT give a field (the cancellation axiom fails since
(1,0)(0,1)=(0,0)=0
while (1,0)#0 and (0,1) #0). Ishall call this the silly multiplication for the plane.
The multiplication we want is less obvious:
(a,b)(c,d)=(ac-bd, ad+boc).
Geometrically, let r be the length of the segment from 0 to (a,b), and let 8 be the angle
that segment makes with the x-axis; then (a,b) (c,d) is the point obtained by rotating the



point (c,d) about the origin through the angle 8 and multiplying its distance from the

origin by r. This is the clever multiplication for the plane.

Proposition The obvious addition and clever multiplication for the plane satisfy the field

axioms.

Complex numbers are defined to be points in the plane. As usual, points (a,0) on the
x-axis are identified with real numbers a. There is nothing mystical about i : it isjust the
point (0,1) on the y-axis. Using these identifications and our formulas for addition and
multiplication, we then find:

a+ib = (a,0) + (0,1)(b,0)
=(a,0) + (0,b)
= (a,b)
and
i2=(0,1)(0,1)=(-1,0) =-1.
So we are justified in writing complex numbers uniquely in the form a +ib with a, b
real.

Coming from this point of view, Hamilton was led to ask whether there was a
multiplication for points in 3D space which, together with the obvious addition, made 3D
Euclidean space R? into a field. It seems that he struggled with this for 15 years and failed
to find such a multiplication.

Hamilton was a great mathematician and physicist with deep contributions to the
theory of rays and to mechanics.

[ believe he knew about a multiplication on 4D Euclidean space R* for quite a long

time but he rejected it because an axiom failed.

Step 3 Questioning of axioms Finally, he dared to question the axiom. While walking

with his wife on 16 October 1843, he carved on a wooden bridge the formulas:
i2=j2=k%?=ijk =-1
which have the consequences:
ij=k, k=i, ki=j,
ji=-k, kj=-i, ik=-.
In particular, ij=—i: the multiplication is not commutative.
It took courage to reject this hallowed axiom. Hamilton named his numbers

quaternions and proceeded to market them.



Quotes from E.T. Bell Men of Mathematics (Simon & Schuster, 1937)

From page 305

To use Einstein’s phrase, Lobatchewsky challenged an axiom. Anyone who

challenges an "accepted truth” that has seemed necessary and reasonable to the great
majority of sane men for 2000 years or more takes his scientific reputation, if not his life, in
his hands.

From pages 360-1

Hamilton’s deepest tragedy was neither alcohol nor marriage but his obstinate belief
that quaternions held the key to the mathematics of the physical universe. History has
shown that Hamilton tragically deceived himself when he insisted ”... I stillmust assert
that this discovery appears to me to be as important for the middle of the 19th Century as
the discovery of fluxions [the calculus] was for the close of the seventeenth”. Never was a

great mathematician so hopelessly wrong.

I strongly disagree with Bell's assessment. I claim that the first quote applies at least as

validly to Hamilton as to Lobatchewsky.

Back to the mathematics. Points in 4D space R* can be identified with lists (w,x,y,z)
of four real numbers w, x, y, z. But we could equally well think of them as pairs (a,b) of
complex numbers a, b via arelationship such as a=w +ix, b=y —1iz. Itisnot hard to
believe that Hamilton tried to mimic the clever multiplication of pairs of real numbers to
come up with a clever multiplication of pairs of complex numbers. The clever
multiplication he probably found by experimentation is

(a,b)(c,d)=(ac-—bd, ad+bc);
it only differs from the earlier formula because of the presence of a couple of complex

conjugate signs.

Proposition The obvious addition and clever multiplication for pairs of complex

numbers satisfy all the field axioms except for commutativity of multiplication.

When all field axioms except commutativity of multiplication hold, we say we have a
division ring. So quaternions form a division ring which is denoted by H in honour of
Hamilton’.

Identify each complex number a with the pair (a,0) and, since we already have a

meaning for i, put j=(0,1). As before we can see that

*Q is already taken.



a+jb = (a,b)
for complex numbers a, b. If a happens to be real, notice that, for any pair (c,d) of
complex numbers,
a(c,d) = (@,0)(c,d) = (ac,ad) = (ac,ad)
= (ca,da) = (ca—d0,da+ c0)
= (c,d)a.
So the real numbers do commute with all other quaternions. We now introduce the
quaternion
k = 1ij (so k=(i,0)(0,1)=(0,-) ).
For real numbers w, X, y, z, we see that
wH+xi+yj+zk = (w,0)+(x,0)(@G 0)+(y,0)(0, 1)+ (z 0) (0, -)
= (W.0)+(xi,0)+(0,y) +(0,-z1i)
= (W+xi,y-zi)
= (a,b)
where a=w +xi, b=y+2zi. So every quaternion q=(a,b) can be written uniquely in
the form
q=w+xit+tyj+zk
The conjugate of q is defined by
q =w-xi-yj-zk = (a,-b)
and the modulus |q| of q is defined to be the non-negative real number satisfying
|q|2 = w2+ x2+y2+22 = |a|2+ |b|%
Notice that q =0 if and only if |q| = 0. We can calculate
qq = (a,b)(a,-b) = (aa+ bb,ba-ab) = (Ja]2+ |b
It follows that the multiplicative inverse of q is given by
41

= —=q for q#0.
|a]?

2’0) — |q|2

Hamilton studied 3D geometry using quaternions. Sometimes points in 3D Euclidean
space are called vectors and we identify the vector (x,y,z) with the quaternion

r=xi+tyj+zk

Notice that |r| is the distance from the origin to the point r. Also, |r-r€ is the distance
from r to r' in3D space. For q = w+xi+yj+zk = w+r,
Re(q) = w is called the real part of q, and

Ve(q) = r is called the vector part of q.
Hamilton defined two operations on vectors which came out of quaternion multiplication

as follows. Take two quaternions q=w + r and q =w' +r'. Using the division ring
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axioms, we deduce that
qq = W+r) W' +r) = ww' + wr' + w'r + rr.
Let us look at the four terms on the right-hand side:
w w' is just the product of the two real numbers;
wr' = (wx, wy', wz') is the obvious vector on the line joining the origin to r';
w'r = (W' x, w'y, w'z) is the obvious vector on the line joining the origin to r;
but more interestingly, rr' is a quaternion having a real part and a vector part.

The dot product r e r' of the two vectors is defined by

rer = —Re(rr').
The vector product r x r' is defined by
r X r = Ve(rr).

From the multiplication of quaternions, it is possible to work out explicit algebraic
formulas for the dot and vector products:
rer = xx+yy+zz
rxr =(yz-zy', zx'-xz', xy -yx).

There are important geometric meanings for these operations. The dot product allows us
to deal with angles in 3D: if the points r and r' are at unit distance from the origin 0
then rer' is equal to the cosine of the angle subtended by them at the origin. The vector
product r x r' is the point whose distance from the origin is the area of the parallelogram
with vertices 0, r,r +r', r' and which lies on the line through the origin perpendicular to
the parallelogram (actually there are two such points — the right-hand-screw law picks out
the right one).

While we use multiplication-like symbols for dot and vector product, the rules they
satisfy are not the familiar division ring axioms. It does not make sense to ask dot product
to be associative. Vector product is not associative. Vector product does distribute over

addition but it satisfies the funny property that r x r=0.

Exercise Show that associativity of quaternion multiplication of vectors r, t', " leads to
the following formula
(r X rv) X ru_ r X (rv X rn) — (r. rv) rn _ r(rv ° rvv)

highlighting the failure of associativity for vector product.

I have heard that, in the biggestadvance in Physics since Newton (and his "fluxions"),
Maxwell originally used quaternions to express his fundamental equations for
electromagnetic radiation; only later did he use dot and vector product (which anyway
came from quaternions).

I mentioned that the geometric view of multiplication of complex numbers involves
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rotation. I am indebted to my colleague Professor André Joyal FRSC for telling me of a
similar interpretation for quaternion multiplication. In fact, we first go back and look at a
way of thinking of complex numbers as quotients of points in the plane rather than points
in the plane themselves. This has to do with the geometry of similar triangles (that is,
triangles with corresponding angles equal).

Consider triangles in the Euclidean plane with one vertex at the origin 0.

y A

0 X

We denote this triangle by a/b with the convention that we regard a/b = c¢/d when the

two triangles are directly similar (that is, similar and similarly oriented).

y A
d
C
a
Qb
—
0 X

Notice that ¢ is obtained from a by multiplying by the same complex number as needed
to obtain d from b: thatis,
c=ua and d = ub forsome complex number u# 0.
So it is like for rational numbers ua /ub = a/ b.
Although we were quite happy with our view of complex numbers as points in the

plane, we had to be quite clever to come up with the multiplication. However, there is a
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one-to-one correspondence between complex numbers and classes of similar triangles. The
correspondence takes the complex number a to a/1 while the triangle a/b corresponds to
the complex number a b~l. Under this correspondence, multiplication of complex
numbers transforms as follows: rotate and dilate so that the two triangles have one side 0b

in common, then the rule is simply

(@/b) (b/c) = (a/o).

C

0 C o
X

This multiplication of triangles was apparently known to Fermat. Does this mean that
Fermat discovered complex numbers? Hardly.
There is a similar situation with quaternions. We do not go to 4D (where there would

be difficulty looking at the pictures), rather, 3D. Consider triangles in 3D Euclidean space.

z \

F
X

0

Again we denote such a triangle with s#0 by r /s where this time we write

r/s=r/s
when the two triangles happen to be in the same plane and are directly similar in that
plane as before. We can identify r /s with the quaternion q=rs~! and the multiplication

is determined by the natural rule:

(x/s)(s/t) = (/).



Exercise Show that t /s =1t'/s if and only if rs™! =1 s ~L

When Gauss's notebooks were published posthumously, it was found that he had
constructed non-Euclidean geometry and (around 1817) constructed quaternions (which he
called mutations ). The approach Gauss took to quaternions was in terms of rotations. But
Gauss did not market his ideas. Ithink that is an important point. Gauss's work does not
detract from that of Lobatchewsky or Hamilton whose discoveries were independent (as far
as we can tell). They also recognized the importance of the discoveries and had the courage
to publicly dismiss an axiom. Gauss did not claim priority when he learnt of the work of
the other two. Perhaps he had forgotten he had worked on those topics.

Steps 4 and 5 for algebraran along quickly and more-or-less concurrently with the
corresponding steps in geometry. A big step was taken by George Boole in allowing
symbols to represent predicates not just numbers (commutativity still holds).

It took until the middle of this century (Albert, Adams, Milnor) to have proofs that R,
C, H are the only division rings of the form R" keeping the obvious addition. In

particular, Hamilton was right to dismiss R3 and stop at R*.
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